1 Discussion 1: Bias-variance tradeoff

Overfit/underfit data. Model complexity. (See DATA 100.)

Notation
* Model parameters: 0
» Supervised dataset: X,Y

Sometimes, the data is denoted by D.

1.1 MLE

Maximum Likelihood Estimation: find the model parameters that maximize the likelihood of observing the data.

N N
OvLe = argmgxlj[ng(yi|xi) = argmgme;Pg(yi|xi) (1)
1.2 Maximum A Posteriori (MAP) estimation

MAP: find the model parameters that maximize the posterior probability of the parameters given the data (so, incor-
porates a prior distribution over the model parameters).

Orap = argmgxP(tﬂY,X)
= argméaxP(Yw,X)P(G) )
= arg méaxlog P(Y10,X) + log P(6)

The term log P(6) is the log-prior, and serves as a regularizer.
Regularization is when we give a range to 6.

1.3 Gaussian prior and ¢, regularization

A common choice for the prior is a Gaussian distribution: P(6) = N(;0,021I), where mean is 0, standard deviation
is o, I is an identity matrix.
The log-prior is then:
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where d is the dimensionality of the model parameters 6.
Thus, A||@]|3 is the regularizer, where ) is the /5 regularization term.



2 Discussion 2: Optimization methods
Define « as learning rate (step size).
* Gradient descent: 0" = 0" — 337 p VoL(2i,y:,0")

* Stochastic GD with a random minimatch B? for each iteration ¢:
Pttt = gt — ‘B?‘—t‘ in,yieD VoL(z;,y;,0") forsome Bt C D

Denote GD/SGD as: 0! = 0 — oV L(6?).
Since gradient descent performs poorly for non-convex problems and can get stuck in local minima, we introduce
two techniques:

1. SGD with momentum: quicker progress towards the optimum along the horizontal axis, while not diverging
along y-axis. Heavy ball method:

vt =mo' + VL(6)
t+1 _ gt ¢ )
0 =60"—av

where m controls how much we remember the past gradients, v* is our accumulated gradient vector.

2. Adaptive learning: rescaling different components of the gradient to get better direction.

ot = 0; — ﬁngL(ﬁt) ( update kth coordinate of parameters 6")
st = Bsi7 + (1 = B)(Vinetar L(6)*) RMSProp: keep running average )

st =571 + B(Vineta, L(0%)?)  Adagrad: keep sum (s’ increases over time => stop learning)

where a vector s? tracks the "size" of the past gradients in each dimension.

3 Discussion 3: NN Building blocks

3.1 Affine layer forward/backward pass

z=xW+b
vxL:g—j%:g—SWT

VWL:%-%:XT% (6)
wi-y- 2

where z € RV*M  x ¢ RV*P for number of samples N and dimensionality (number of features) D.
Note that weights W € RP*M pias b € RM,

3.2 ReLU
ReLU(z) = max(0, z) (7



3.3 Batch normalization forward/backward pass
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4 Discussion 4: CNNs
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Note: We denote % to be convolution operator with the filter on the right.

Y = X xw forinput X, kernel w
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Example: Assume Y = Xxw € R? forinput X € R*, kernel w € R3. Alternatively, y; j o =

OL
Consider Vy L = 8?/1
dyz

T1w1 + To2w2 + x3w3]

Towi + X3Wsg + Tawsz |
Then gradient of loss w.r.t. X is:

Note that Y = {

Oy oL . oL
% 5 lgi oo
Oy 9L . oL oL
VoL = |2 0y | = |W2 9y TWigy,
X d L oL
Yy . aiL Wa + =— _|_ Wo 5—
dz3 Oy 37 By oL 29y,
Oy oL ws -
Oxs Oy dya
where w is reversed filter w.
Similarly, the gradient of loss w.r.t. w is:
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We use %yLl as a2 x 1 filter over 4 x 1 vector x.
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5 Discussion 5: RNNs
5.1 Vanilla RNN

"Unroll" node at each time step.
hy = tanh(Whnhe—1 + Wapae + by)
Yt = Whyht + by

At different time steps, RNNs always use the same parameters. So, the parameterization cost does not grow as
number of time steps increase.

(10)

5.2 Exploding/vanishing gradients

For RNNs, we effectively multiply h; by W for ¢ times, facing same problems with gradients as very deep feed forward
networks. Gradients can explode (become infinitely large for large weight scales 1) or vanish (reduce to 0 for too
small weights W, providing no updates).

Techniques to address problem with gradients:

1. Gradient clipping: "clip" gradient vector by its magnitude to avoid vanishing gradients.
VL < min(1, il )VL

2. Truncation: terminate the sequence (fixed, random) to avoid exploding gradients.
(Short-term dependencies matter more anyway.)

3. Dropout layers.

4. Residual connections. Consider Jacobian "through" the layer:
Tiy1 = :L"z + F(x;), then 251 — [ 4 8 gE.
Even 1f is close to 0, 1dent1ty is closer to 1, so can stack and multiply!

5. Layer normalization.

5.3 Loss and backpropagation

Given h; and o;:
hy = f(xt, htflawh)

Ot = g(hta wo)
. (11)

1
L(Z‘l,-- S XTTy YL, - ayT7whawO) = 7zl(yta0t)

Backpropagation through time:

8.[/ 1 Z 8l(yt,0t) _ 1 Z 8l(yt,0t) ) 8g(ht,wo) ) 8ht

ow, T ow, T4 0o Ohy — Owy,
Ohy  Of(xy,hy—1,wn)  Of (x4, he—1,wp) Ohy—q
h = .
where W, Bwh + 8ht,1 8’LUh
. Ohy 5f($€t,ht Lwn) = [ Tq 0 (g hyoa,wn) \ Of (i hioa,wh)
specifically Bwn + ; j:lll Oy dun,

Do more reading! https://towardsdatascience.com/backpropagation-in-rnn-explained-bdf853b4elc2



6 Discussion 6: Attention

6.1 Attention

gk explaik] /\/5)
Vi, ) 3, exp(aik]l [ /51)

attention scores: a;; = softmax (

a(Q, K, V') = softmax (%) Vv

Given k input sequences of length M and ouput sequences of length IV, the complexities are:
* encoder self-attention is O(M?2k)

* encoder-decoder attention is O(M Nk)

e decoder self-attention is O(N2k)

Multi-head attention
Loss



