
1 Discussion 1: Bias-variance tradeoff
Overfit/underfit data. Model complexity. (See DATA 100.)

Notation

• Model parameters: θ

• Supervised dataset: X,Y

Sometimes, the data is denoted by D.

1.1 MLE
Maximum Likelihood Estimation: find the model parameters that maximize the likelihood of observing the data.

θMLE = argmax
θ

N∏
i=1

Pθ(yi|xi) ≡ argmax
θ

N∑
i=1

Pθ(yi|xi) (1)

1.2 Maximum A Posteriori (MAP) estimation
MAP: find the model parameters that maximize the posterior probability of the parameters given the data (so, incor-
porates a prior distribution over the model parameters).

θMAP = argmax
θ

P (θ|Y,X)

= argmax
θ

P (Y |θ,X)P (θ)

= argmax
θ

logP (Y |θ,X) + logP (θ)

(2)

The term logP (θ) is the log-prior, and serves as a regularizer.
Regularization is when we give a range to θ.

1.3 Gaussian prior and ℓ2 regularization
A common choice for the prior is a Gaussian distribution: P (θ) = N (θ; 0, σ2I), where mean is 0, standard deviation
is σ, I is an identity matrix.

The log-prior is then:

logP (θ) = log

[
1

(2π)d/2|σ2I|1/2
exp

(
−1

2
θT (σ2I)−1θ

)]
= −d

2
log(2π)− 1

2
log(|σ2I|)− 1

2σ2
θT θ

= − 1

2σ2
∥θ∥22 + const.

(3)

where d is the dimensionality of the model parameters θ.
Thus, λ∥θ∥22 is the regularizer, where λ is the ℓ2 regularization term.

1

2 Discussion 2: Optimization methods
Define α as learning rate (step size).

• Gradient descent: θt+1 = θt − α
|D|
∑

xi,yi∈D∇θL(xi, yi, θ
t)

• Stochastic GD with a random minimatch Bt for each iteration t:
θt+1 = θt − α

|Bt|
∑

xi,yi∈D∇θL(xi, yi, θ
t) for some Bt ⊆ D

Denote GD/SGD as: θt+1 = θt − α∇L(θt).
Since gradient descent performs poorly for non-convex problems and can get stuck in local minima, we introduce

two techniques:

1. SGD with momentum: quicker progress towards the optimum along the horizontal axis, while not diverging
along y-axis. Heavy ball method:

vt = mvt−1 +∇L(θt)
θt+1 = θt − αvt

(4)

where m controls how much we remember the past gradients, vt is our accumulated gradient vector.

2. Adaptive learning: rescaling different components of the gradient to get better direction.

θt+1
k = θtk −

α√
stk + ϵ

∇θkL(θ
t) (update kth coordinate of parameters θt)

stk = βst−1
k + (1− β)(∇thetak

L(θt)2) RMSProp: keep running average

stk = st−1
k + β(∇thetak

L(θt)2) Adagrad: keep sum (st increases over time => stop learning)

(5)

where a vector st tracks the "size" of the past gradients in each dimension.

3 Discussion 3: NN Building blocks

3.1 Affine layer forward/backward pass
z = xW + b

∇xL =
∂L

∂z
· ∂z
∂x

=
∂L

∂z
WT

∇WL =
∂L

∂z
· ∂z

∂W
= XT ∂L

∂z

∇bL =

N∑
i=1

∂L

∂zi

(6)

where z ∈ RN×M , x ∈ RN×D for number of samples N and dimensionality (number of features) D.
Note that weights W ∈ RD×M , bias b ∈ RM .

3.2 ReLU
ReLU(x) = max(0, x) (7)

2

3.3 Batch normalization forward/backward pass

Var(x) =
1

N

N∑
i=1

(xi − µ)2

xnorm =
x− µ√

Var(x) + ϵ
where std =

√
Var(x) + ϵ

Y = γ · xnorm + β scaled by γ, shifted by β

∇γL =
∂yi
∂γ
· ∂L
∂yi

=

N∑
i=1

∂L

∂yi
· xnorm,i

∇βL =
∂yi
∂β
· ∂L
∂yi

=

N∑
i=1

∂L

∂yi
=

N∑
i=1

δi

∇xnorm,i
L =

∂yi
∂xnorm,i

· ∂L
∂yi

=
∂L

∂yi
· γ and ∇xnorm

L =
∂L

∂y
· γ = dxnorm

∇xL =
1

N ∗ std

(
Ndxnorm −

N∑
i=1

dxnorm − xnorm ·
N∑
i=1

(dxnorm · xnorm)

)

(8)

4 Discussion 4: CNNs
Note: We denote ⋆ to be convolution operator with the filter on the right.

Y = X ⋆ w for input X, kernel w

∂L

∂X
=

∂Y

∂X
· ∂L
∂Y

=

(
padded

∂L

∂Y

)
⋆ w

∂L

∂w
=

∂Y

∂w
· ∂L
∂Y

= X ⋆
∂L

∂Y

δi =
∂L

∂yi
, w = w rotated by 180 degrees

(9)

Example: Assume Y = X⋆w ∈ R2 for input X ∈ R4, kernel w ∈ R3. Alternatively, yi,j,c′ =
∑

h,w,c xi−h,j−w,cwh,w,c,c′ .

Consider∇Y L =

[
∂L
∂y1
∂L
∂y2

]
.

Note that Y =

[
x1w1 + x2w2 + x3w3

x2w1 + x3w2 + x4w3

]
.

Then gradient of loss w.r.t. X is:

∇XL =


∂y
∂x1
· ∂L∂y

∂y
∂x2
· ∂L∂y

∂y
∂x3
· ∂L∂y

∂y
∂x4
· ∂L∂y

 =


w1 · ∂L

∂y1

w2 · ∂L
∂y1

+ w1
∂L
∂y2

w3 · ∂L
∂y1

+ w2
∂L
∂y2

w3 · ∂L
∂y2

 =


∂L
∂x1
∂L
∂x2
∂L
∂x3
∂L
∂x4

 =


0
0
∇Y L
0
0

 ⋆ w,

where w is reversed filter w.
Similarly, the gradient of loss w.r.t. w is:

∇wL =

x1 · ∂L
∂y1

+ x2 · ∂L
∂y2

x2 · ∂L
∂y1

+ x3 · ∂L
∂y2

x3 · ∂L
∂y1

+ x4 · ∂L
∂y2

 = X ⋆∇Y L.

We use

[
∂L
∂y1
∂L
∂y2

]
as a 2× 1 filter over 4× 1 vector x.

3

5 Discussion 5: RNNs

5.1 Vanilla RNN
"Unroll" node at each time step.

ht = tanh(Whhht−1 +Wxhxt + bh)

yt = Whyht + by
(10)

At different time steps, RNNs always use the same parameters. So, the parameterization cost does not grow as
number of time steps increase.

5.2 Exploding/vanishing gradients
For RNNs, we effectively multiply ht by W for t times, facing same problems with gradients as very deep feed forward
networks. Gradients can explode (become infinitely large for large weight scales W) or vanish (reduce to 0 for too
small weights W , providing no updates).

Techniques to address problem with gradients:

1. Gradient clipping: "clip" gradient vector by its magnitude to avoid vanishing gradients.
∇L← min(1, c

∥∇L∥2
)∇L

2. Truncation: terminate the sequence (fixed, random) to avoid exploding gradients.
(Short-term dependencies matter more anyway.)

3. Dropout layers.

4. Residual connections. Consider Jacobian "through" the layer:
xi+1 = xi + F (xi), then ∂xi+1

∂xi
= I + ∂F

∂xi
.

Even if ∂F
∂xi

is close to 0, identity is closer to 1, so can stack and multiply!

5. Layer normalization.

5.3 Loss and backpropagation
Given ht and ot:

ht = f(xt, ht−1, wh)

ot = g(ht, wo)

L(x1, . . . , xT , y1, . . . , yT , wh, wo) =
1

T

T∑
t=1

l(yt, ot)

(11)

Backpropagation through time:

∂L

∂wh
=

1

T

T∑
t=1

∂l(yt, ot)

∂wh
=

1

T

T∑
t=1

∂l(yt, ot)

∂ot
· ∂g(ht, wo)

∂ht
· ∂ht

∂wh

where
∂ht

∂wh
=

∂f(xt, ht−1, wh)

∂wh
+

∂f(xt, ht−1, wh)

∂ht−1
· ∂ht−1

∂wh

specifically
∂ht

∂wh
=

∂f(xt, ht−1, wh)

∂wh
+

t−1∑
i=1

 t∏
j=i+1

∂f(xj , hj−1, wh)

∂hj−1

 ∂f(xi, hi−1, wh)

∂wh

Do more reading! https://towardsdatascience.com/backpropagation-in-rnn-explained-bdf853b4e1c2

4

6 Discussion 6: Attention

6.1 Attention

attention scores: aij = softmax

(
qik

T
j√
dk

)
=

exp(qik
T
j /
√
sk)∑

r exp(qik
T
r /
√
sk)

a(Q,K, V) = softmax
(
QKT

√
dk

)
V

Given k input sequences of length M and ouput sequences of length N , the complexities are:

• encoder self-attention is O(M2k)

• encoder-decoder attention is O(MNk)

• decoder self-attention is O(N2k)

Multi-head attention
Loss

5

