1 Discussion 1: Bias-variance tradeoff

Overfit/underfit data. Model complexity. (See DATA 100.)

Notation

• Model parameters: θ

• Supervised dataset: X, Y

Sometimes, the data is denoted by \mathcal{D} .

1.1 MLE

Maximum Likelihood Estimation: find the model parameters that maximize the likelihood of observing the data.

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{N} P_{\theta}(y_i|x_i) \equiv \arg\max_{\theta} \sum_{i=1}^{N} P_{\theta}(y_i|x_i)$$
 (1)

1.2 Maximum A Posteriori (MAP) estimation

MAP: find the model parameters that maximize the <u>posterior</u> probability of the parameters given the data (so, incorporates a prior distribution over the model parameters).

$$\begin{aligned} \theta_{MAP} &= \arg\max_{\theta} P(\theta|Y,X) \\ &= \arg\max_{\theta} P(Y|\theta,X)P(\theta) \\ &= \arg\max_{\theta} \log P(Y|\theta,X) + \log P(\theta) \end{aligned} \tag{2}$$

The term $\log P(\theta)$ is the log-prior, and serves as a regularizer.

Regularization is when we give a range to θ .

1.3 Gaussian prior and ℓ_2 regularization

A common choice for the prior is a Gaussian distribution: $P(\theta) = \mathcal{N}(\theta; 0, \sigma^2 I)$, where mean is 0, standard deviation is σ , I is an identity matrix.

The log-prior is then:

$$\log P(\theta) = \log \left[\frac{1}{(2\pi)^{d/2} |\sigma^2 I|^{1/2}} \exp\left(-\frac{1}{2} \theta^T (\sigma^2 I)^{-1} \theta\right) \right]$$

$$= -\frac{d}{2} \log(2\pi) - \frac{1}{2} \log(|\sigma^2 I|) - \frac{1}{2\sigma^2} \theta^T \theta$$

$$= -\frac{1}{2\sigma^2} \|\theta\|_2^2 + \text{const.}$$
(3)

where d is the dimensionality of the model parameters θ .

Thus, $\lambda \|\theta\|_2^2$ is the regularizer, where λ is the ℓ_2 regularization term.

2 Discussion 2: Optimization methods

Define α as learning rate (step size).

- Gradient descent: $\theta^{t+1} = \theta^t \frac{\alpha}{|\mathcal{D}|} \sum_{x_i,y_i \in \mathcal{D}} \nabla_{\theta} L(x_i,y_i,\theta^t)$
- Stochastic GD with a random minimatch B^t for each iteration t: $\theta^{t+1} = \theta^t \frac{\alpha}{|B^t|} \sum_{x_i,y_i \in \mathcal{D}} \nabla_{\theta} L(x_i,y_i,\theta^t)$ for some $B^t \subseteq \mathcal{D}$

Denote GD/SGD as: $\theta^{t+1} = \theta^t - \alpha \nabla L(\theta^t)$.

Since gradient descent performs poorly for non-convex problems and can get stuck in local minima, we introduce two techniques:

1. **SGD with momentum:** quicker progress towards the optimum along the horizontal axis, while not diverging along y-axis. Heavy ball method:

$$v^{t} = mv^{t-1} + \nabla L(\theta^{t})$$

$$\theta^{t+1} = \theta^{t} - \alpha v^{t}$$
(4)

where m controls how much we remember the past gradients, v^t is our accumulated gradient vector.

2. Adaptive learning: rescaling different components of the gradient to get better direction.

$$\begin{aligned} \theta_k^{t+1} &= \theta_k^t - \frac{\alpha}{\sqrt{s_k^t + \epsilon}} \nabla_{\theta_k} L(\theta^t) \quad (\text{ update } k \text{th coordinate of parameters } \theta^t) \\ s_k^t &= \beta s_k^{t-1} + (1-\beta)(\nabla_{theta_k} L(\theta^t)^2) \quad \text{RMSProp: keep running average} \\ s_k^t &= s_k^{t-1} + \beta(\nabla_{theta_k} L(\theta^t)^2) \quad \text{Adagrad: keep sum } (s^t \text{ increases over time => stop learning}) \end{aligned} \tag{5}$$

where a vector s^t tracks the "size" of the past gradients in each dimension.

3 Discussion 3: NN Building blocks

3.1 Affine layer forward/backward pass

$$\mathbf{z} = \mathbf{x}W + b$$

$$\nabla_{\mathbf{x}}L = \frac{\partial L}{\partial \mathbf{z}} \cdot \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \frac{\partial L}{\partial \mathbf{z}}W^{T}$$

$$\nabla_{W}L = \frac{\partial L}{\partial \mathbf{z}} \cdot \frac{\partial \mathbf{z}}{\partial W} = X^{T}\frac{\partial L}{\partial \mathbf{z}}$$

$$\nabla_{b}L = \sum_{i=1}^{N} \frac{\partial L}{\partial \mathbf{z}_{i}}$$
(6)

where $\mathbf{z} \in \mathbb{R}^{N \times M}$, $\mathbf{x} \in \mathbb{R}^{N \times D}$ for number of samples N and dimensionality (number of features) D. Note that weights $W \in \mathbb{R}^{D \times M}$, bias $b \in \mathbb{R}^{M}$.

3.2 ReLU

$$ReLU(x) = \max(0, x) \tag{7}$$

Batch normalization forward/backward pass

$$\begin{aligned} &\operatorname{Var}(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \\ &x_{norm} = \frac{x - \mu}{\sqrt{\operatorname{Var}(x) + \epsilon}} \quad \text{where std} = \sqrt{\operatorname{Var}(x) + \epsilon} \\ &Y = \gamma \cdot x_{norm} + \beta \quad \text{scaled by } \gamma, \text{ shifted by } \beta \\ &\nabla_{\gamma} L = \frac{\partial y_i}{\partial \gamma} \cdot \frac{\partial L}{\partial y_i} = \sum_{i=1}^{N} \frac{\partial L}{\partial y_i} \cdot x_{norm,i} \\ &\nabla_{\beta} L = \frac{\partial y_i}{\partial \beta} \cdot \frac{\partial L}{\partial y_i} = \sum_{i=1}^{N} \frac{\partial L}{\partial y_i} = \sum_{i=1}^{N} \delta_i \\ &\nabla_{x_{norm,i}} L = \frac{\partial y_i}{\partial x_{norm,i}} \cdot \frac{\partial L}{\partial y_i} = \frac{\partial L}{\partial y_i} \cdot \gamma \quad \text{and} \quad \nabla_{x_{norm}} L = \frac{\partial L}{\partial y} \cdot \gamma = \operatorname{dx}_{norm} \\ &\nabla_{x} L = \frac{1}{N * \operatorname{std}} \left(N \operatorname{dx}_{norm} - \sum_{i=1}^{N} \operatorname{dx}_{norm} - x_{norm} \cdot \sum_{i=1}^{N} (\operatorname{dx}_{norm} \cdot x_{norm}) \right) \end{aligned}$$

Discussion 4: CNNs

Note: We denote \star to be convolution operator with the filter on the right.

$$Y = X \star w \quad \text{for input } X, \text{ kernel } w$$

$$\frac{\partial L}{\partial X} = \frac{\partial Y}{\partial X} \cdot \frac{\partial L}{\partial Y} = \left(\text{padded } \frac{\partial L}{\partial Y} \right) \star \overline{w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial Y}{\partial w} \cdot \frac{\partial L}{\partial Y} = X \star \frac{\partial L}{\partial Y}$$

$$\delta_i = \frac{\partial L}{\partial y_i}, \ \overline{w} = w \text{ rotated by } 180 \text{ degrees}$$

$$(9)$$

Example: Assume $Y = X \star w \in \mathbb{R}^2$ for input $X \in \mathbb{R}^4$, kernel $w \in \mathbb{R}^3$. Alternatively, $y_{i,j,c'} = \sum_{h,w,c} x_{i-h,j-w,c} w_{h,w,c,c'}$.

Consider
$$\nabla_Y L = \begin{bmatrix} \frac{\partial L}{\partial y_1} \\ \frac{\partial L}{\partial y_2} \end{bmatrix}$$
.

$$\begin{aligned} & \text{Consider } \nabla_Y L = \begin{bmatrix} \frac{\partial L}{\partial y_1} \\ \frac{\partial L}{\partial y_2} \end{bmatrix}. \\ & \text{Note that } Y = \begin{bmatrix} x_1w_1 + x_2w_2 + x_3w_3 \\ x_2w_1 + x_3w_2 + x_4w_3 \end{bmatrix}. \\ & \text{Then gradient of loss w.r.t. } X \text{ is:} \end{aligned}$$

$$\nabla_X L = \begin{bmatrix} \frac{\partial y}{\partial x_1} \cdot \frac{\partial L}{\partial y} \\ \frac{\partial y}{\partial x_2} \cdot \frac{\partial L}{\partial y} \\ \frac{\partial y}{\partial x_3} \cdot \frac{\partial L}{\partial y} \\ \frac{\partial y}{\partial x_4} \cdot \frac{\partial L}{\partial y} \end{bmatrix} = \begin{bmatrix} w_1 \cdot \frac{\partial L}{\partial y_1} \\ w_2 \cdot \frac{\partial L}{\partial y_1} + w_1 \frac{\partial L}{\partial y_2} \\ w_3 \cdot \frac{\partial L}{\partial y_1} + w_2 \frac{\partial L}{\partial y_2} \\ w_3 \cdot \frac{\partial L}{\partial y_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial x_1} \\ \frac{\partial L}{\partial x_2} \\ \frac{\partial L}{\partial x_3} \\ \frac{\partial L}{\partial x_4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \nabla_Y L \\ 0 \\ 0 \end{bmatrix} \star \overline{w},$$

where \overline{w} is reversed filter w.

Similarly, the gradient of loss w.r.t. w is:

$$\nabla_w L = \begin{bmatrix} x_1 \cdot \frac{\partial L}{\partial y_1} + x_2 \cdot \frac{\partial L}{\partial y_2} \\ x_2 \cdot \frac{\partial L}{\partial y_1} + x_3 \cdot \frac{\partial L}{\partial y_2} \\ x_3 \cdot \frac{\partial L}{\partial y_1} + x_4 \cdot \frac{\partial L}{\partial y_2} \end{bmatrix} = X \star \nabla_Y L.$$

We use
$$\begin{bmatrix} \frac{\partial L}{\partial y_1} \\ \frac{\partial L}{\partial y_2} \end{bmatrix}$$
 as a 2×1 filter over 4×1 vector x .

5 Discussion 5: RNNs

5.1 Vanilla RNN

"Unroll" node at each time step.

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

$$y_t = W_{hy}h_t + b_y$$
(10)

At different time steps, RNNs always use the same parameters. So, the parameterization cost does *not* grow as number of time steps increase.

5.2 Exploding/vanishing gradients

For RNNs, we effectively multiply h_t by W for t times, facing same problems with gradients as very deep feed forward networks. Gradients can explode (become infinitely large for large weight scales W) or vanish (reduce to 0 for too small weights W, providing no updates).

Techniques to address problem with gradients:

- 1. Gradient clipping: "clip" gradient vector by its magnitude to avoid vanishing gradients. $\nabla L \leftarrow \min(1, \frac{c}{\|\nabla L\|_2}) \nabla L$
- 2. Truncation: terminate the sequence (fixed, random) to avoid exploding gradients. (Short-term dependencies matter more anyway.)
- 3. Dropout layers.
- 4. Residual connections. Consider Jacobian "through" the layer: $x_{i+1} = x_i + F(x_i)$, then $\frac{\partial x_{i+1}}{\partial x_i} = I + \frac{\partial F}{\partial x_i}$. Even if $\frac{\partial F}{\partial x_i}$ is close to 0, identity is closer to 1, so can stack and multiply!
- 5. Layer normalization.

5.3 Loss and backpropagation

Given h_t and o_t :

$$h_{t} = f(x_{t}, h_{t-1}, w_{h})$$

$$o_{t} = g(h_{t}, w_{o})$$

$$L(x_{1}, \dots, x_{T}, y_{1}, \dots, y_{T}, w_{h}, w_{o}) = \frac{1}{T} \sum_{t=1}^{T} l(y_{t}, o_{t})$$
(11)

Backpropagation through time:

$$\begin{split} \frac{\partial L}{\partial w_h} &= \frac{1}{T} \sum_{t=1}^T \frac{\partial l(y_t, o_t)}{\partial w_h} = \frac{1}{T} \sum_{t=1}^T \frac{\partial l(y_t, o_t)}{\partial o_t} \cdot \frac{\partial g(h_t, w_o)}{\partial h_t} \cdot \frac{\partial h_t}{\partial w_h} \\ & \text{where} \quad \frac{\partial h_t}{\partial w_h} = \frac{\partial f(x_t, h_{t-1}, w_h)}{\partial w_h} + \frac{\partial f(x_t, h_{t-1}, w_h)}{\partial h_{t-1}} \cdot \frac{\partial h_{t-1}}{\partial w_h} \\ & \text{specifically} \quad \frac{\partial h_t}{\partial w_h} = \frac{\partial f(x_t, h_{t-1}, w_h)}{\partial w_h} + \sum_{i=1}^{t-1} \left(\prod_{j=i+1}^t \frac{\partial f(x_j, h_{j-1}, w_h)}{\partial h_{j-1}} \right) \frac{\partial f(x_i, h_{i-1}, w_h)}{\partial w_h} \end{split}$$

Do more reading! https://towardsdatascience.com/backpropagation-in-rnn-explained-bdf853b4e1c2

6 Discussion 6: Attention

6.1 Attention

attention scores:
$$a_{ij} = \operatorname{softmax}\left(\frac{q_i k_j^T}{\sqrt{d_k}}\right) = \frac{\exp(q_i k_j^T/\sqrt{s_k})}{\sum_r \exp(q_i k_r^T/\sqrt{s_k})}$$

$$a(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Given k input sequences of length M and ouput sequences of length N, the complexities are:

- encoder self-attention is $O(M^2k)$
- encoder-decoder attention is O(MNk)
- decoder self-attention is $O(N^2k)$

Multi-head attention Loss