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Chapter 1

CTMC

Q) =0

where () is a rate matrix where each row sums up to 0.
We show reversibility using DBE: 7,q;; = mjq;; Vi, 7.
Jump chain (embedded DTMC) does not have self-loops.

ﬁﬂDTMc(l")

WCTMC(QZ) = Z (1.1)

y @WDTMC(?J)

Problem: [Sp20 Q7 Chair Game] Sean independently stands up/down at rate of 2, Will at rate of 3.

Solution: Split into cases of (0,0)4,(1,1)p, (0,1)5,(1,0)¢:

1 3 2
Ba = 5 + gﬁB + 550 (1.2)
1 Uniformization
Pick ¢ > max, Q(x). Then, we have:
1
P=1+ gQ (1.3)

Solving for 7P = 7 yields Tuniformized = TCTMC-



Chapter 2
Random graphs

Erd6s—Rényi graph G ~ G(n,p) has n vertices, where each edge appears with probability p.

Gy is some graph with n vertices and m edges:
P(G = Gy) = p™(1 — p)(&)—m

The distribution of D, a degree of an arbitrary vertex, is Bin(n — 1, p).

n—1

The probability that any vertex is isolated is (1 — p)

Fact: Poisson approximation: Bin(n,p) &~ Poisson(np).
Stirling’s approximation: n! &~ /27wn (Z)n and Inn! ~nlnn —n.
Theorem 1 (Sharp threshold). Let p(n) := A2 for a constant A > 0.

(1) if A < 1, then P(G is connected) — 0

(2) if A > 1, then P(G is connected) — 1
i.e. the graph is connected with high probability if p(n) >> 22,
Fact: Taylor’s expansion: In(1 — x) &~ —z for small z.

Proof. Assume A < 1. Let X,, be the number of isolated nodes in G.
It is sufficient to show that P(X,, > 0) — 1 as n — oo.
Let ¢ := (1 —p)"! be the probability a node is isolated.
E[X,] = n(l —p)" = ng: deifne X,, = > | I where I; indicates whether vertex i is isolated.

1
ImE[X,|=hn+(n-—-1)In(l —p)~Ilnn— (n— 1))\M — 00 (2.1)
n

var(X,,) = nvar(l;) + n(n — 1) cov({y, I1).
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Note that E[I;]5] = P(nodes 1, 2 are isolated) = (1 —p)?" 2 = 1‘% and cov(Iy, Ir) = E[[, ;] — ¢* = %

Use the second-moment method:

]P)(Xn = O) < IP>(|‘Xn - E[XNH > E[Xn])

< var(X,)
= E[X,]2 (2.2)
2
_WQ(l_Q)+n(n_1>%_1—q n—1 p 50
N n2q? T ng n 1l—p
O

Problem: [Fa22 Q1 Random Cut of a Random Graph] Let G ~ G(100,1/4) where a random cut of G

contains vertex with probability 1/3. Find expected number of edges in a cut.

Solution: Expected number of edges in a cut of size K is k(n — K)p:
n n B .
3 (k) (1 — 0" *k(n — k)p = pE[K(n — K)] K ~ Bin(n,q)
k=0
= p(nE[K] — E[K?]) (2.3)
=p(n-ng — (nq(l - q) + n’q*))

=pqn(n — 1+ q—nq) = pgn(n — 1)(1 - q)

Problem: [HW 11 Subcritical Forest] Let G ~ G(n, p(n)), where p(n) = o(%), which is called subcritical
phase.

(i) Let X, be the number of cycles in the graph. Show that E[X,] — 0.

(ii) Show that P(G is a forest) — 1 as n — 0.

Solution:

(i) Proof. Let Yy be the number of cycles of length k, where E[Y;] = (7)p(n)*k!11 (k! possible orderings,

k possible starting vertices, undirected).

g = e = Y () B = S O S a0 o)

k
k=3
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(ii) Proof. Using Markov’s inequality:

P(X, >0) =P(X, > 1) <E[X,] =0 (2.5)



Chapter 3
Hypothesis testing

Likelihood:

fyim (y)
L(y) = &—————= 3.1
W = &
Decision rule: accept Hy if L(y) > ¢, accept Hy; w.p. 7 if L(y) = c.
1 Neyman-Pearson rule
Intuition: we want to choose to accept or reject hypothesis given a single observation.
max PCD :=P(X =1|X =1)=> P(X =1V =y) - P(Y = y|X =0)
X
y (3.2)

A

st. PFA=P(X = 1|X = 0) < j
for some fixed 8 € [0, 1].

Key: evaluate for each value of y.
Probability of false alarm (PFA): P(H = 1|H = 0).
Probability of correct detection (PCD): P(H = 1|H = 1).

2 MAP, MLE

MLE assumes uniform prior distribution, while MAP incorporates some information about argument.

Orp = arg max P(datald)
A ’ (3.3)
Orrap = arg max P(data|d) P(0)
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Example: [German Tank Problem| Estimate total number of German tanks N given any two serial

numbers X; and Xs.

. 1 n
Nyrg=arg max P(Xy; =21, Xo =29|/N =n)=arg max —— =arg min : ( ) = max(xy, )

n>max(z1,r2) n>max(z1,r2) (2> n>max(z1,r2

since those two samples could be any unordered pair.

Problem: [Disc 11 Q1] Decision rule: accept X = 1if Y > t. Else, accept X = c.
Note that Y ~ Exp(X).

L(y) = % decreasing in y (3.4)

P(X =1|X =¢)=P(Y > t|X =¢) = e <0.05

log 2
SO —ctzlog% andt:%o.



Chapter 4

Hilbert space of RVs

Fact: None of Hilbert space conditions are strong enough to imply independence, including orthogonality!

1. EXY]=(X,Y)=cov(X,Y) if X,Y zero-mean
2 E[XY]=0<= X 1Y
3. Orthogonality principle: E[(Y — L[Y|X])X] =0, 0or X L Y —L[Y|X]

4. Projection: ¥ = L[Y|X] = E[Y] 4+ XY (X — F[X)

var(X)

5. Norm: || X|| = (X, X) = VE[X?] = /var(X) + E[X]?
The expectation of a RV X always minimizes MSE, where we are projecting into 1:

E[X] = argmin E[(X — z)?] (4.1)

Fact: Y — L[Y|X] is called innovation, since it represents the new information that was not predictable

from previous observations.

1 Minimum Mean Square Error, Linear Least Square Estimator

MMSE[Y|X] = E[Y|X]

cov(X,Y) (4.2)

LLSE[Y|X]|=E[Y]+ ) (X —E[X])=L[Y|X] = aX + b is the best linear approximation
var

Note that L[Y|X] is orthogonal to all linear functions of X, but not all functions of X in general.
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Theorem 2 (Orthogonal LLSE update).
LY |X,Z] = L[Y|X] + L[Y|Z — L|Z| X]] (4.3)

where X 1 Z —1L[Z|X].

Fact: L[Y|X,Z]=L[Y|X]|+L[Y|Z]iff X,Y,Z are zero-mean and X | Z.
Lemma 1. (a) E[(X —E[X|Y])p(Y)] =0 V function ¢(-)
(b) if there exists a function g(Y) s.t. E[(X —g(Y))p(Y)] =0 Vo¢(-), then g(Y) = E[X|Y]

Lemma 2. If MMSE[Y|X]| = E[Y|X] is linear, it is equal to LLSE[Y|X].



Chapter 5
Jointly Gaussian

Random variables X, Y are jointly Gaussian iff any their linear combination a X + bY is Gaussian.

1. Jointly Gaussian RVs X, Y are independent if cov(X,Y’) = 0 (sufficient condition).
2. Any linear transformation of JG RVS is also JG, i.e. if (X,Y") is JG then (X +bY,cX +dY) is JG.
3. If X)Y are JG, then MMSE = LLSFE.

4. If XY are JG, they have marginal Gaussian distributions. The converse is not true.

10
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