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Chapter 1

CTMC

πQ = 0

where Q is a rate matrix where each row sums up to 0.

We show reversibility using DBE: πiqij = πjqji ∀i, j.
Jump chain (embedded DTMC) does not have self-loops.

πCTMC(x) =

1
Q(x)

πDTMC(x)∑
y

1
Q(y)

πDTMC(y)
(1.1)

Problem: [Sp20 Q7 Chair Game] Sean independently stands up/down at rate of 2, Will at rate of 3.

Solution: Split into cases of (0, 0)A, (1, 1)D, (0, 1)B, (1, 0)C :

βA =
1

5
+

3

5
βB +

2

5
βC (1.2)

1 Uniformization

Pick q ≥ maxx Q(x). Then, we have:

P = I +
1

q
Q (1.3)

Solving for πP = π yields πuniformized = πCTMC .

2



Chapter 2

Random graphs

Erdős–Rényi graph G ∼ G(n, p) has n vertices, where each edge appears with probability p.

G0 is some graph with n vertices and m edges:

P(G = G0) = pm(1− p)(
n
2)−m

The distribution of D, a degree of an arbitrary vertex, is Bin(n− 1, p).

The probability that any vertex is isolated is (1− p)n−1.

Fact: Poisson approximation: Bin(n, p) ≈ Poisson(np).

Stirling’s approximation: n! ≈
√
2πn

(
n
e

)n
and lnn! ≈ n lnn− n.

Theorem 1 (Sharp threshold). Let p(n) := λ lnn
n

for a constant λ > 0.

(1) if λ < 1, then P(G is connected) → 0

(2) if λ > 1, then P(G is connected) → 1

i.e. the graph is connected with high probability if p(n) >> lnn
n
.

Fact: Taylor’s expansion: ln(1− x) ≈ −x for small x.

Proof. Assume λ < 1. Let Xn be the number of isolated nodes in G.

It is sufficient to show that P(Xn > 0) → 1 as n → ∞.

Let q := (1− p)n−1 be the probability a node is isolated.

E[Xn] = n(1− p)n−1 = nq: deifne Xn =
∑n

i=1 Ii where Ii indicates whether vertex i is isolated.

lnE[Xn] = lnn+ (n− 1) ln(1− p) ≈ lnn− (n− 1)λ
lnn

n
→ ∞ (2.1)

var(Xn) = n var(Ii) + n(n− 1) cov(I1, I2).
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Note that E[I1I2] = P(nodes 1, 2 are isolated) = (1− p)2n−3 = q2

1−p
and cov(I1, I2) = E[I1I2]− q2 = pq2

1−p

Use the second-moment method :

P(Xn = 0) ≤ P(|Xn − E[Xn]| ≥ E[Xn])

≤ var(Xn)

E[Xn]2

=
nq(1− q) + n(n− 1) pq2

1−p

n2q2
=

1− q

nq
+

n− 1

n

p

1− p
→ 0

(2.2)

Problem: [Fa22 Q1 Random Cut of a Random Graph] Let G ∼ G(100, 1/4) where a random cut of G

contains vertex with probability 1/3. Find expected number of edges in a cut.

Solution: Expected number of edges in a cut of size K is k(n−K)p:

n∑
k=0

(
n

k

)
qk(1− q)n−kk(n− k)p = pE[K(n−K)] K ∼ Bin(n, q)

= p(nE[K]− E[K2])

= p(n · nq − (nq(1− q) + n2q2))

= pqn(n− 1 + q − nq) = pqn(n− 1)(1− q)

(2.3)

Problem: [HW 11 Subcritical Forest] Let G ∼ G(n, p(n)), where p(n) = o( 1
n
), which is called subcritical

phase.

(i) Let Xn be the number of cycles in the graph. Show that E[Xn] → 0.

(ii) Show that P(G is a forest) → 1 as n → ∞.

Solution:

(i) Proof. Let Yk be the number of cycles of length k, where E[Yk] =
(
n
k

)
p(n)kk! 1

k
1
2
(k! possible orderings,

k possible starting vertices, undirected).

E[Xn] =
n∑

k=3

E[Yk] =
n∑

k=3

(
n

k

)
p(n)k

(k − 1)!

2
=

n∑
k=3

(np(n))k

2k
≤

n∑
k=3

(np(n))k → 0 (2.4)
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(ii) Proof. Using Markov’s inequality:

P(Xn > 0) = P(Xn ≥ 1) ≤ E[Xn] = 0 (2.5)
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Chapter 3

Hypothesis testing

Likelihood:

L(y) =
fY |H1(y)

fY |H0(y)
(3.1)

Decision rule: accept H1 if L(y) > c, accept H1 w.p. γ if L(y) = c.

1 Neyman-Pearson rule

Intuition: we want to choose to accept or reject hypothesis given a single observation.

max
X̂

PCD := P(X̂ = 1|X = 1) =
∑
y

P(X̂ = 1|Y = y) · P(Y = y|X = 0)

s.t. PFA := P(X̂ = 1|X = 0) ≤ β

(3.2)

for some fixed β ∈ [0, 1].

Key: evaluate for each value of y.

Probability of false alarm (PFA): P(Ĥ = 1|H = 0).

Probability of correct detection (PCD): P(Ĥ = 1|H = 1).

2 MAP, MLE

MLE assumes uniform prior distribution, while MAP incorporates some information about argument.

θ̂MLE = argmax
θ

P(data|θ)

θ̂MAP = argmax
θ

P(data|θ)P(θ)
(3.3)
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Example: [German Tank Problem] Estimate total number of German tanks N given any two serial

numbers X1 and X2.

N̂MLE = arg max
n≥max(x1,x2)

P(X1 = x1, X2 = x2|N = n) = arg max
n≥max(x1,x2)

1(
n
2

) = arg min
n≥max(x1,x2)

(
n

2

)
= max(x1, x2)

since those two samples could be any unordered pair.

Problem: [Disc 11 Q1] Decision rule: accept X = 1 if Y > t. Else, accept X = c.

Note that Y ∼ Exp(X).

L(y) =
c

ey(c−1)
decreasing in y

P(X̂ = 1|X = c) = P(Y > t|X = c) = e−ct ≤ 0.05
(3.4)

so −ct = log 1
20

and t = log 20
c

.
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Chapter 4

Hilbert space of RVs

Fact: None of Hilbert space conditions are strong enough to imply independence, including orthogonality!

1. E[XY ] = ⟨X, Y ⟩= cov(X, Y ) if X, Y zero-mean

2. E[XY ] = 0 ⇐⇒ X ⊥ Y

3. Orthogonality principle: E[(Y − L[Y |X])X] = 0, or X ⊥ Y − L[Y |X]

4. Projection: Ŷ = L[Y |X] = E[Y ] + cov(X,Y )
var(X)

(X − E[X)

5. Norm: ∥X∥ =
√
⟨X,X⟩ =

√
E[X2] =

√
var(X) + E[X]2

The expectation of a RV X always minimizes MSE, where we are projecting into 1:

E[X] = argmin
x∈R

E[(X − x)2] (4.1)

Fact: Y − L[Y |X] is called innovation, since it represents the new information that was not predictable

from previous observations.

1 Minimum Mean Square Error, Linear Least Square Estimator

MMSE[Y |X] = E[Y |X]

LLSE[Y |X] = E[Y ] +
cov(X, Y )

var(X)
(X − E[X])= L[Y |X] = aX + b is the best linear approximation

(4.2)

Note that L[Y |X] is orthogonal to all linear functions of X, but not all functions of X in general.
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Theorem 2 (Orthogonal LLSE update).

L[Y |X,Z] = L[Y |X] + L[Y |Z − L[Z|X]] (4.3)

where X ⊥ Z − L[Z|X].

Fact: L[Y |X,Z] = L[Y |X] + L[Y |Z] iff X, Y, Z are zero-mean and X ⊥ Z.

Lemma 1. (a) E[(X − E[X|Y ])ϕ(Y )] = 0 ∀ function ϕ(·)

(b) if there exists a function g(Y ) s.t. E[(X − g(Y ))ϕ(Y )] = 0 ∀ϕ(·), then g(Y ) = E[X|Y ]

Lemma 2. If MMSE[Y |X] = E[Y |X] is linear, it is equal to LLSE[Y |X].
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Chapter 5

Jointly Gaussian

Random variables X, Y are jointly Gaussian iff any their linear combination aX + bY is Gaussian.

1. Jointly Gaussian RVs X, Y are independent if cov(X, Y ) = 0 (sufficient condition).

2. Any linear transformation of JG RVS is also JG, i.e. if (X, Y ) is JG then (aX + bY, cX + dY ) is JG.

3. If X, Y are JG, then MMSE = LLSE.

4. If X, Y are JG, they have marginal Gaussian distributions. The converse is not true.
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