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Chapter 1

Probability axioms

0.1 Probability space
A probability space: (2, F, P):
e (): a set of all possible outcomes e.g. a binary string of length 2n with n ones

e F: aset of all events (each event has 0 or more outcomes, |F| = 2/%/)
e P: assignment of probability to event. Uniform sample space: P(A) = % e.g. P(w) = 3]

Problem: There are n red and n blue balls.

Find E[N], where N is the number of balls with the same color as the previous ball in the draw.

Solution: Let X; be an indicator variable, whether balls ¢ and —1 share the same color, fori =2, ..., 2n.
Then, we have: E[X;] = =L since we "fix” a color of ith ball.
Thus, we have: E[N] =E[}2", X;] = Y7 E[Xj = (2n —2+1) - 2L =n — 1.
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0.2 Law of Total Probability

Given disjoint events A; for 1 = 1,...,n that partition the sample space §2:
P(B) =) P(BNA) =) P(B|A)- P(4)
i=1 =1

Problem: Let A; = {exactly ¢ bins are empty}.
Define B = {all empty bins sit to the left of all bins containing at least one ball}.

(a) Find P(B) in terms of A;’s.

(b) Calculate P(A;).

Solution:

(a) Using the Law of Total Probability:

n n

B(B) =D _B(BOA) =) P(BIA) B(A) = Gy P(4)

i=1 =1

Note that the only relevant outcome for event A; is 0211 ... 11, where ith value in the string is equal

to the number of balls at bin 1.
(b) A; = {exactly one bin is empty}, so it has to be some permutation of {0,2,1,...,1}.

e n ways to choose an empty bin
e n — 1 ways to choose a bin with two balls
° (3) to choose those two balls

e (n —2)! ways to arrange (order matters) remaining n — 2 balls into n — 2 bins

nn nn *

P(A)) = n(n-1)(3)(n-2)! (%)



EECS 126 Midterm 1 Spring 2025

0.3 Union bound

Given random variables A; for i = 1,2,..., N, the union bound is:
PUY, A) < S, P(A)
If events Ay, ..., Ay are disjoint, Zfil P(A;) = IP’(UZ.]\L1 A;) <1

A monkey types on a keyboard with 27 keys (corresponding to letters a-z, plus a period ‘.’).

a) Assuming the monkey types each character independently and uniformly at random, what is the
probability they type “class.” on their first try? (Note the period at the end of the word ‘class’)

b) Let (i) denote the number of letters in the ith word in the English dictionary (all words are
composed of only letters a-z, no periods). For example, if ‘aardvark’ is the 3rd word in the
dictionary, then ¢(3) = 8. Assuming there are N words in the dictionary, use the axioms of

probability to show that
N\
— < 27.
> (y) ==

i=1

Hint: Define N disjoint events.

a) Since we need to hit the 6 symbols in order, and keys are struck uniformly, the probability
is (1/27)°.
b) Let A; be the probability the monkey types the ith word in the dictionary, followed by a

period, on their first try. Then, Aj, As,. .., Ay are disjoint events, and P(A;) = (1/27)4®+1,
Hence, by the axioms of probability

N N
> (/200 = 3" P(A;) = PUY,A) < 1.
i=1 i=1
Rearranging gives the claim.
Concepts tested: Computing simple probabilities from a given model; formulating suitable
events; probability axioms.

Figure 1.1: MT1 SP23 Q2.



Chapter 2

Discrete and continuous RV

1 DRV

X: Q=R eg Q={1,2,...,6} for a dice.
EX]=>,zP(X ==2).
EX|Y]=>,zP(X = z|Y).

1.1 Uniform

X ~ Unif{l,...,n}.
E[X] = Z@_l j. 11 ntl) _ ntl

var(X) = ”21;1.

1.2 Bernoulli

1 with probabilit
XNB(p),WhereX: with probabillity p

0 with probability 1—p
E[X] = p.

var(X) = E[X?] - (E[X))? = p - p = p(L - p).

1.3 Binomial

X ~ Bin(n,p) is n independent Bernoulli trials.
P(X = k)= (p)p"(1—p)" .
BIX] = 555, k- P(h) = 52, K)o — g,
Note: E[X]| =E[X; + Xy + -+ X,,| = E[Xj] + E[X;5] + - - - + E[X,,] = np.
var(X) = np(1 — p).

Note: Bernoulli trials are independent, so the variance adds up.
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1.4 Poisson

X ~ Poiss(\).
IED(X—k) r=0,1,2,...
Mx(s) = Sptgetegds = e A 3 Ik = e df = e,
E[X] =2 k- < A)\k =X 300 17 Ak S= A
Note: E[X] = M; ( ) = Aefe MAC ‘s:O =
var(X) = .
Note: E[X2] = M/ (s) = Aese A" + \e2seAAe’]

/\)\k

.>’

o= A1),

. o) n 1 P | ) . . y S ’ ] s
Note: > a" = = and )~ % = e” is a Maclaurin expansion of Taylor series.

Poisson merging

Let X ~ Poiss()),Y ~ Poiss(u) be independent RVs. Then X + Y ~ Poiss(\ + p).

Poisson splitting
If X ~ Poiss()), Y|X =z ~ Bin(z, p), then Y ~ Poiss(Ap).

Proof. P(Y =y) =) P(Y =y|X =2) -P(X =z).

1.5 Geometric

X ~ Geom(p).
P(X = k) =p(1 —p)* .
B[X] = S, k- p(1 - p)".
Note: Use Tail Sum Formula: E[X] =37 P(X > k) =>2,(1—p)F = %.

Note: Use memoryless property:

E[X] =E[X|X =1]-P(X = 1) + E[X|X > 1] - P(X > 1)

~1-p+(1+EX) - (1-p) =

var(X) = %.

Note: Given g(X) = X%

Elg(X)] = E[g(X)|X = 1] - P(X = 1) + E[g(X)|X > 1] - P(X > 1)

—g(1) p+Elg(X + 1) (1-p) = 2

(2.1)

(2.2)



EECS 126 Midterm 1 Spring 2025

Memoryless property of Geometric distribution

For integers s >t > 0, P(X > s|X >t) =P(X >s—t) and P(X =s|X >t) =P(X =s—1).

Proof. B(X > s|X > t) = HEC90EE0] - B — G0l — (1 — p)s. O
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2 CRV

General formulas.

Leibniz integral rule: - ( a; ) a b( ) = f(z,a(z)) - La(z).
Fundamental Theorem of Calculus: di f

Pla < X <b) = [ fx(x)d
Plx <X <a+e) = [ fx(t)dt = efx(x).
z) = [ —00® fx(z)dx = P(X < ).
Fx(OO) = 1, Fx<—OO) =0.
2l ( ) = fx().
fX = [ fxy(z,y)dy.
(x)fy\x(yW) )

Condltlonal PDF: fxyy(z|y) = fo;((;)y) = IO

2.1 Uniform

X ~ Unif([a, b]).
fx(z) = 7.
0 if z<a
Fx(z) =4 &2 if z € [a,b]
1 if >0
MX(S):fabe b—dx—es(bb;ea).
E[X]Ia b

2.2 Exponential

X ~ Exp(A).

fx(z )— % where x > 0.

Fx(z f )\e*)‘gdﬁ—l—e AT
oo for s>\
for s <A

>

My (s) =E[e**] = [[* de Mewdr = X [ el Nody = {

A—s
1

E[X] = My (s) = il = 3
B[X?) = M(s) = 2,0 = 3
var(X) = E[X?] — (E[X])? = & — % = &.

Note: Has a memoryless property like Geometric! P(X > s+ t|X > s) = P(X > t), where 0 < s < t.

Problem: Exponential queue.

There are two cashiers. First one has a sevice time X; ~ Exp(A;), second one X5 ~ Exp(Ag).
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Say you go to the first available cashier. There are two people ahead of you, at the first and seconds
cashiers.

Suppose we know \; < Ao, i.e. the first cashier is slower.
(a) Find py, the probability the first cashier finishes before the second cashier.
(b) Find the probability that you are the last person to leave out of three.
(¢) Find E[Y|Z], where Y = max(X7, X5), Z = min(Xy, X3).

(d) Compute the joint density X; and X; + Xs.

Solution:

(a) Using Law of Iterated Expectation:

P(X, < X») = E[P(X, < X,|X})] = Ele%1] = / e\ N g
0

= )\/ e T iAe) g — !
0

D VW

(b) Note that we want to minimize the wait time, and will choose the cashier that we believe will
finish faster. Thus, we will choose the first cashier with probability p; and the second cashier with
probability p, = 1 — p;. We need to account for the cases when the chosen cashier is not the first

one to finish:

D1 P2+ D2-p1 = 2p1p2

(c) Due to memoryless property, we ”take no breaks between trials” and the already passed time Z does
not matter:
E[Y|Z] = Z+p1-E[Xo] +po By = 2+ 2+ 22
2 1
(d) Consider the joint CDEF:

[e.9]

Fx, xi4x:(2,2) =P(X; <2, X1+ Xy < 2) = P(X; <z, Xy 4+ Xo < 2| Xy = 21) fx, (21)dxy

\
8

P(XQ S Z — l’1)fX1 (Q?l)dflfl

8

I
\é\&\

Fy,(2 — 21) fx, (21)dy

—00

(2.4)

10
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Differentiating both sides, we have:

fX17X1+X2(I7 Z) = dixlcszXI X1+X2 €T, Z / sz le (xl)dxl fX2(Z - m)fxl (Lﬂ)
(2.5)

Note that we are applying the Fundamental Theorem of Calculus here: |- [ f(t)dt = f(z)|.

Problem: Let X; ~ Exp()) be independent for 1 <i <mn.
Let M = min(X;y,...,X,).

Solution: P(M >m)=P(X;>mnN...X,,>m)=P(X; >m)----- P(X,, > m), since independent.
Then, we have: P(M > m) = e "™,
Thus, we have: Fy;(m) =1—e ™ and M ~ Exp(\n).

Problem: Let X,Y ~ U([0,1]).

Solution: Note that P(Y > X) =P(Y < X) = 1 by symmetry.

E[Y|min(X,Y)=z]=P(Y > X)-E[Y[: <Y < 1]+ P(Y < X)-E[Y[|Y = Z]

11 1d +1 1 1 1—22+1 3241 (2.6)
e — —Z = — —Z =
21—2 ) YT T 9T 2 1

z

2.3 Gaussian
X NN(:“? 2)'
fx(x) = \/7767

S

o2
Mx(s) = e™2 THs,

(z—p)?
202 .

Standard Gaussian

X ~ N(0,1).
fx(a) = F=e®

e [ =

Mx(S) = E[ SX

2/2.

L
Ta

[(z— 5)2

(z —sx)

5T 7x2/2d d[E = e° /2

= v )= v do = \/ﬂffooo ¢
Y =0X +p,ie Y ~N(u,0?), then My(s) =e*Mx(os) = R
E[X] = 0.

var(X) = 1.

11
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o E[X7 = [% o2t Tdr = 1 = var(X) + E[X].

o E[X?] = MY(s)| 3.

s=0 -

Problem: Consider Z = X +Y, where X ~ N (ux,0%), Y ~ N (uy,o0%) are i.i.d.
Find fz(2).

1.

Solution: First, let’s simplify: pux = py =0, 0% = 0%
52

My(2) = Mx(s) - My(s) = e5/2 . ¢5°/2 = 5
Thus, fz(z) ~ (0,2).

Problem: Find P(X >Y), where X ~ N (0,1), Y ~ N (2,3) are independent.

Solution: Consider Z = X — Y. Note that Z ~ N (ux — py, 0% + 0%) = N (=2,4).

Z4+2 042

Vi Vi

P(X >Y)=P(X - Y > 0) = P(N(—2,4) > 0) :IP( ) =PWN(0,1) > 1) =1—&(1)

Jointly Gaussian independent RVs

Given independent X ~ N (u,0%) and W ~ N (0,03). Consider Y = X + W, where Y ~ N (u, 0% + 73).
X — C(\’,‘;g)é’/})/) (Y — p) is independent of Y.
In general, X — E[X|Y] is independent of Y.

12
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3 General

3.1 Law of Iterated Expectation (LIE)
E[X] = E[E[X]Y]]
where E[X|Y] = ¢(Y) and is a RV.

Proof.
[E[X]Y]] ZEX|Y—?J PY=y)=) > a-PX=zy =y) - P(Y =y)

=> 2 P(X =z) =E[X]

A zoologist observes B ~ Poisson(u) bears living on the prairie. Bear i has a territory with
“range parameter” R; ~ N(r,0?). Conditioned on R;, the territory of bear i has area X; ~
Uniform(R?, 3R?), independent of the number of bears B. None of the bear territories overlap.
What is the expected total territory area T" occupied by all bears on the prairie?

This is like the “random sum of random variables” example we saw in class to illustrate the
usefulness of iterated expectation. Since T' = Zi 1 X, and areas are independent of B, we can
compute

E(T) = E(E(T | B)) = E(E(LL, Xi | B)) = E(BE(X1)) = E(B) E(Xy).

It remains to find the expected area of one bear’s territory, which can also be evaluated by
iterated expectation, since the distribution of X; is uniform once we fix R;:

E(X)) = B(E(X; | R))) = B2R?) = 2(var(R,) + E(B))?) = 2(0? + 12).

So, the expected total area is
E(T) = 2u(o® +1%).

Concepts tested: Iterated expectation; linearity of expectation; variance decomposition in
terms of second moment.

Figure 2.1: MT1 SP23 Q3.

3.2 Law of Total Variance (LTV)

var(X) = E[var(X|Y)] + var(E[X|Y])
Problem: Let R ~ Unif{1,2,3,4,5} and S ~ N(R, R/2).

Solution: E[S] = E[E[S|R]].
Note that E[S|R] = R, since R is the mean of the Gaussian.
Then, we have: E[S] =E[R] =) r-P(R=r)=1 ZZ =12 =3.
Note that var(S|R) = R/2, since R/2 is the variance of the Gaussmn.
var(S) = E[var(S|R)] + var(E[S|R]) = E[R/2] + var(R).

13
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3.3 Tail Sum Formula

Let X be a RV that takes values only in N. Then, E[X] = 3" P(X > k).

Proof. B[X] = Y02 kPx (k) = S0, (S, D Px(k) = 3002, S0 P (X = k) = 308, P(X > 1), O

3.4 Variance

var(X) = E[(X — E[X])?] = E[X?] - (E[X])".

3.5 Variance of the sum of RVs

Let X,Y be RVs, then var(X +Y') = var(X) + var(Y) + 2 cov(X,Y).
Corollary. If XY are independent, then var(X +Y') = var(X) + var(Y).

Corollary. var(2X) = 2var(X) + 2cov(X, X) = 4var(X).

3.6 Covariance and correlation
cov(X,Y)=E[(X —E[X])- (Y —E[Y])] = E[XY] — E[X]E[Y].
o If cov(X,Y) =0, then X, Y are uncorrelated.
e If cov(X,Y) > 0, then when X increases, Y tends to increase.

e If cov(X,Y) < 0, then when X decreases, Y tends to decrease.

Properties:
1. cov(X,Y) = cov(Y, X).
2. cov(X, X) = var(X).
3. cov(aX 4+ 5,Y) = acov(X,Y).

4. cov(X +Y,Z) = cov(X, Z) + cov(Y, Z).

Correlation coefficient: p= ——2XY) __ 11 7).
var(X) var(Y)

Problem: Given independent X ~ AN (p,0%) and W ~ N(0,03). Consider Y = X + W, where ¥ ~
N(u, 0t +03).
Find cov(X,Y).

14
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Solution: cov(X, X + W) = cov(X, X) + cov(X, W) = var(X) + 0 = o%.

Problem: Toss a fair coin three times.

Define X = number of Heads in first 2 tosses and Y = number of Heads in all 3 tosses.

Solution: Note that X ~ Bin(2,1/2) and Y ~ Bin(3,1/2).
Let Y = X + Z, where Z ~ Bernoulli(1/2).
Note that X and Z are independent, so cov(X, Z) = 0.
cov(X,Y) = cov(X, X + Z) = var(X) + cov(X, Z) = 25(1 — 5) = 5 > 0.

Intuitively, if there are more Heads in the first two tosses, there will be more Heads in all three tosses.

3.7 Dervided distributions

If a RVY = ¢g(X) for some other RV X, then E[Y] = E[g(X)].

3.8 Order statistics

Problem: Let Xi,...,X, beiid. RVs with common density fx(x) and CDF Fx(z).
Let X® be the kth smallest of (X1,...,X,).
X® is the minimum, X ™ is the maximum.
What is the density fyu (z) of X*®)?

Solution: Note that P(X® € (2,2 + dz)) = fxw (v)dz.

In order for the kth smallest to lie on the interval (z,x + dz):
e k — 1 points should lie on (—o0, )

e one point should lie on (z,x + dz)

e remaining n — k points should lie on (z + dz, )

Thus, we have:

fxw(z)de < P(XW® € (2,2 + dz)) = <Z a 1> Fx ()" - nfx(x)dz - (1 — Fx(x))"* (2.8)

Problem: Let variables be Uniform, so X; ~ U([0, 1]), i.i.d. Find E[X®] (see homework).

15
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Solution: Note that fol t"™(1 —t)"dt = (mTr!Zil)! )

E—1

:n(Z:D /le 21 (1 - )”’fdx:n(Z:D /Olavk(l—:c)”kdx (2.9)

(
(n—1"  Kln—Fk)! K
"ok —-1! nt D! n+l

E[X )] = /01 2 fr (2)dz — /01 v (” - 1) Fe(@) " nfx(z) - (1— Fy(z))"*da

Problem: Let variables be Exponential, so X; ~ Exp()), i.i.d. Find E[X®)].

Solution: Using the memoryless property, we can represent X*) = Y] + ... + Y}, where Y; is a waiting
time between X1 and X©
Note that Y; is the minimum among remaining n —i-+ 1 variables, and Y;’s are distributed with different

rates \;.
Y1 = min(Xy,..., X,) ~ Exp(An). Similarly, Y5 ~ Exp(A(n — 1)), etc.

Then, we have:
EX®]=E[Y:+---+ Y] = ZE[Y
' (2.10)

n

:Zm )\Zn—erl

3.9 Convolutions

Given Z =X +Y.
Note that fzx(z|z) = fy (2 — ):

Frx(zlz) =P(Z <2 X =2)=P(X+Y <z X =2)=Pla+Y <2)=PY <z—2) = Fy(z — )
Then, we have a convolution:

fz2(2) = fxiv (2 / Ix () fz1x(2]x) dw—/ fx (@) fy(z — z)dz = (fx = fr)(2)

3.10 Change of variables

See discussion 3 Q1.

16



Chapter 3

PMF, PDF, conditional PDF and MGF

PMF (Probability Mass Function) = PDF, but for discrete RV of the form P(X = k).

1 Conditional PDF

Problem: Consider Y = aX + Z, where X, Z ~ N(0,1) are i.i.d.
Find the consitional density of X|Y".

Solution: Then, Y ~ N (0,0 +1) and Y|X = ~ N(axz,1). Note that Y|z = ax + Z with mean az.

_ Ix@)fyix @)

Using the Bayes rule fx|y = o) , we have:

o 2
7(17a2+1y)

1 T
e, XY =y~ N(z25Y, =)

iy = e 7o (3.1)
1
\ /27r7a2+1
a?+1

Then, we have: E[X|Y = y] = -2~y and E[Y|X = 2] = ox.

2 MGF

s2 X2 s3X3
2! + 3! +

Here, X is a RV and s is a parameter:

Taylor expansion: e =1+ sX +

83

Mx(s) = E[e**] =1+ sE[X] + S_ZE[XQ] *3

3
5 E[X°] +...

In general, 4> E[es¥] ‘3:0 = E[X™].

? ds™

Moment-generating function of:

17
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e a continous RV X: Mx(s) = E[e™*] = [*_ fx(z) - e"du.

e a discrete RV X: Mx(s) = E[e**] = SLP(X = k) - e
Problem: Mx(s) = $e7% + 12055 4 Les.

Solution: Recognize discrete pattern: Mx(s) =Y, e**P(X = k).
—3 with probability

Then, we have: X = ¢ 2025 with probability

1 with probability

NN N ST

Properties:
1. Mx(0) =1 (region of convergence).
2. fY = aX + 3, My(s) = E[e?Y] = E[e*(@X+0)] = E[es*X . 3] = P E[e**X] = P Mx (as).
3. f Z=X+Y, X,Y are independent RVs, then:

My(s) = E[e??] = E[e* ¥t = E[e*X - Y] = Mx(s) - My (s)

In general, if Z = """ | X;, when X,’s are independent, we have:

My(s) = HMXi(S)

X, (81, oy, Sn) — E[631X1+52X2+---+san] — H?:l MXZ(SZ)

4. | Joint MGF: Mx, x,

-----

For example, for independent X, Y, we can show independence of X — Y, X +Y:
MX—YX—i—Y(S]_, 32) — E[eSI(X—Y)+82(X+Y)] — E[6(81+82)X+(82—81)Y] — ]E[e(51+52)X] . E[e(SQ_sl)Y],

Note: MGF is always unique and strictly positive!

Problem: Consider Z = X2 4+ Y?, where X,Y ~ N(0,1), i.i.d.
Find the density of Z.

Solution: Use MGF!
Mx2+y2(8) = MX2<S)My2 (S)
We have:

2 o0 2 &0 2 1 .2 1 o0 2 1
My>(s) = E[e**] = / ™ fx(x)dr = / e’" —_27‘_6_1 Py = o /Oo e~ (17280220 — Wi

o0 — 00

18
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Thus:
1 1/2

:1—2521/2—3

sz+y2 (S)

and Z ~ Exp(1/2). Therefore, PDf of Z is Ae ™ = 1e=#/2.

Problem: Consider a coin that turns Heads with probabiltiy p. For a given integer k& > 1, let N denote
the number of independent flips until we see exactly k& Heads.

Find PMF of N, My(s) and var(N).

Solution: Note that N is a DRV.
For the number of flips to be N = n, we need the nth toos to be Heads, and the previous n — 1 tosses

to have exactly k — 1 Heads.
The PMF of N is:

]P) N — — k 1— n—=k
(N =n) (k, B 1)29 (I-p)
Let N = X+ -+ X}, where X, is a number of flips is takes for ith Heads to show up, i.e. X; ~ Geom(p).

Then, we have:
k

E]

where My, (s) = E[E] = 2, P(X = 2) - ¢ = 5% p(1 — p) 6™ = pe* Y [*(1 — p))F = =2

1—es(1-p)~
pe’ :
My(s)= [ —2°
ws) (1—es<1—p>)

Note that var(N) = var(X; +--- + X;) = S.1_, var(X;), since X;’s are independent.

Therefore:

Thus, we have:
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Chapter 4
Concentration inequalities

Limit behavior of RVs. We observe a sequence of i.i.d. RVs: Xy,..., X, ~ X.

Let M, = % be the sample mean.

1. E[M,] = E[X], i.e. an unbiased estimate.
2. var(M,) = %(X), assuming var(X) < oo.

As n — oo, E[M,] = E[X], but var(M,,) — 0, i.e. starts to be more deterministic.

Tail bounds: upper bound on probability that a RV deviates from its mean or central value.

What happens to the ”deviation” |M,, — E[X]| as n gets large?

Concentration bounds: how tightly a RV concetrates around its mean or central value.

How fast does var(M,,) — 07

20
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0.1 Markov’s inequality

If a random variable X > 0, then P(X > a) < E[;q for a constant a > 0.
Proof. 1xs, < . Take E[]: E[X > a] < B, O
0.2 Chebyshev’s bound
var(X)
P(|X —E[X]| > ¢) < 2
Proof. P(|X —E[X]| > ¢) = P((X — E[X])2 > ¢?) < EXEXDT _ var(X) 0
0.3 Chernoft’s bound
E[esX M
P(X > a) = P(eX > ey < L) Mx(s)
esa esa

Solve for the smallest RHS, so the tightest bound!

o P(X >a) < infyo XX

o P(X <a)<inf, Mefis).
Problem: Let X ~ Bin(n,p). Upper bound P(X > an), where p < a < 1.
Solution: X =Y; +---+4Y,, where Y; ~ Bernoulli(p) are independent.

Note that My,(s) = E[e?*| =e*-p+e’- (1 —p) =pe* +1—p.

Mx(s) = IT;Zy My,(s) = (My,(s))" = (pe* +1 —p)".

Then, we have:

. MX(S) . _
> an) = — inf e (pe® + 1 — p)" 4.1
P(X 2 an) = inf —0= = inf e (pe” + 1 - p) (4.1)
—ane % (pef +1 —p)" + e *n(pe® + 1 — p)" pe® = 0.
Thus, it is minimized at s = In z((lljé’ ; .
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Chapter 5

Convergence

1 WLLN, SLLN

e WLLN: every function of samples goes to mean.

e SLLN: every realization of samples goes to mean.

Convergence in probability. Given Xi,..., X, & X,

lim P(| X, — X|>¢€) =0 Ve

n—oo

Weak Law of Large Numbers. If X;,..., X, ~ X are ii.d. RVs with mean E[X] = p and finite

variance,
1 n
Pl |- X; —

ie. Ve,o0 >0: IN(e,0) s.t. P(|M,, — u| > €) <o ¥n> N(eo).
Note: M, % E[X].

Remark: € captures "accuracy level”, o captures ”confidence level”.

Ze>—>0asn—>oo

Proof. Note that E[M,] = u, the true mean.
Let var(X;) = 0% < 00, so var(M,) = (+)?nvar(X) = %
Apply Chebyshev: P (|M,, — p| >¢€) < % = Z—fg — 0 as n — oo.
We say M, 2 pu (" M, converges to u in probability”). O

Strong Law of Large Numbers.

22
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2 CLT

Central Limit Theorem.
lim P(Z, <z)=®(z) Vz

n—o0

where ®(z) = [* #e*ﬁmdt.

23



EECS 126 Midterm 1 Spring 2025

(Blank.)
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