Contents

(1 Convergencel 2
(1 Convergence almost surely| . . . . . . . .. .. 2

[2 Convergence 1n probability| . . . . . . . . . .. 3

[3 Convergence in distribution| . . . . . . . .. ..o L 3

2 Information theory)| 4
M AED] . . o 4

[2 Huffman coding| . . . . . . . . . . 5
.............................................. 5
M Mutual information| . . . . . . . .o o 5

(5 Capacity] . . . . . . e 6
(5.1 Binary erasure channel (BEC)| . . . .. ... ... oo 00 0o 6

[3 Random processes| 7
3 7
(1.1 Big theorem| . . . . . . . . 9

L2 DTMO . . . . 9

D PPl . . 10
(2.1 Erlang| . . . . . . 10

2.2 Random incidence property (RIP)[. . . . . . ... ... .00 10

Spring 2025, taught by Professor Kannan Ramchandran.



Chapter 1
Convergence

Modes of convergence:
almost surely = in probability = in distribution

1 Convergence almost surely
X, 2 X = P{weQ: lim X, = X})=1+=P(lim X,, # X) =0 (1.1)
n—oo n—oo

Theorem 1 (SLLN). If (X,,)%%, are i.i.d. with finite mean E[X,] < oo, then the sample mean X,, converges

n=1

almost surely to the true mean:

ZX L2 B[Xy]

Lemma 1 (Borel-Cantelli lemma). Let (A,)5°, be a collection of events.

The event that A, happens infinitely often is:

A, 1.0. =1lim sup A, = ﬁ U Ay, (1.2)

o k=1k>n
Fact: If w e A, io., thenVn>1:3dk>nst. we A,
Otherwise, there is a max N s.t. w ¢ A, Vk > N, i.e. w only appears in finitely many A,.

(i) I > 07 P(A,) < oo, then P(A, i.0.) =0

(i) If Y7 P(A,) = 0o and (A,)52, are independent, then P(A, i.0.) =1
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Fact: If we define 4,, ;== {w € Q : | X, (w) — X(w)| > €}, then we can show that A, is th event the
sequence X, is not converging to X (i.e. diverges and lim,, ,, X, (w) # X (w)).
So, if 32°° | P(A,) < oo, then P(4, i.0.) =0, and X,, == X.

Some applications of almost sure convergence:

e In DTMC, the proportion of time spent in a state converges a.s. to the inverse of the expected time

it takes to revisit that state (given a few assumptions).

o If (X,,)°, over a finite alphabete, then the average suprise —% log, p(X1,...,X,) converges a.s. to

the entropy H(X). This is called asymptotic equipartition property.

e In machine learning, we can ask if the iterates of the stochastic gradient descent algorithm converge

a.s. to the true minimizer of the given function.

2 Convergence in probability

X, 5 X < lim P(|X,—X|>€¢) =0 Ve>0 (1.3)

n—o0

3 Convergence in distribution
X, S X e limP(X,<2)=P(X<z) VeeR:P(X=2)=0 (1.4)
n—oo

Equivalently, px, — px for discrete RV and fx, — fx for continuous RV.

Theorem 2 (Central Limit theorem). If (X,,)2, are i.i.d. with mean p and variance o*, then the standard

score of the sample mean X,, converges in distirbution to the standard normal distribution.

X, —p
a2

n

i>N(0,1) (1.5)



Chapter 2
Information theory

Shannon’s separation theorem. Source coding and channel coding can be done separately without

loss of optimality.
e SC: cannot compress an i.i.d. source X "on average” asymptotically below the entropy of the source
X, H(X).
e CC: cannot transmit reliably at rate R above channel capacity C.

Theorem 3 (Source Coding Theorem). For an i.i.d. sequence X,..., X, and an arbitrarily small € > 0,

there is a source coding scheme for which

1
lim E [ﬁMXl’ . ,Xn)} < H(X) + € bits per symbol (2.1)

n—oo

s.t. the sequence X1, ..., X, can be recovered from the encoding with a high probability (1 — €).

1 AEP

Fact: A typical set in flipping n coins with a probability of heads p is when there are np heads and
n(1 — p) tails, the expected number of heads and tails.
Then, the probability of a typical sequence is:

pP(1 — p)"i-P) = olog(p™? (1-p)" ' "P)) _ on(plogp+(1-p)log(1-p)) _ 9—nH(p) _ 9E[logpx (X)"] (2.2)
The e-typical set A" is a set of sequences S.t.
2RO < vy (w1, .y @) < 27HHZ)TO (2.3)

where |A™ | & 2nH ),
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Note that the size of the set of all possible sequence is |X|* = 2" lglX],

Since log |X| is the entropy of the uniform distribution X, we have that H(X) < log |X|.

Theorem 4 (Asymptotic Equipartition Property). If X1, ..., X,, ~ pxn i.i.d., then

1 i.p.
— Eloggpxn(xl,...,xn) REaN H(X)

1
P ( —ElongXn(xl,...,xn) — H(X)

>e)—>0a5n—>oo (2-4)

P(Q—TL(H(XH-E) < pxn (@1, ... an) < 2—n(H(X)—e)) -1

2 Huffman coding

Expected Huffman code length is between H(X) and H(X) + 1.

3 Entropy

Entropy of the DRV X:

Properties of entropy:

1. H(X) > 0.
2. Joint entropy: H(X,Y) =E [log2 W} =D vex Doyey Pxy (2, y) log m

p(ylz) —

3. Conditional entropy: H(Y|X)=E [logQ m} =>_,p(x) >, p(ylr)log A< H(Y)

Note that conditioning only decreases entropy.

4. Chain rule: H(X,Y)=H(X)+ HY|X)=H(Y )+ H(X|Y)
Note that H(Y) = H(X,Y) — H(X]Y) is the remaining amount of uncertainty after observing X.

Entropy is maximized when the distribution is uniform.

4 Mutual information

Average amount of information that X provides about Y:

I(X;Y)=H(X)- HX|Y)=H(Y) - HY|X)=HX)+ HY) - HX,Y)
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5 Capacity
C(BEC(p)) =1—p > C(BSC(p)) =1 — h(p).

C =max[(X;Y)=max H(X) — H(X|Y) bits per channel use (2.5)

pPx Px

Each bit we send carries C bits of information.

5.1 Binary erasure channel (BEC)

Ensure reliability by redundancy of (1 — p)n unerased bits. Map one message only to one codeword.

In general, the rate is | R := % )

Fact: We wish to send a message of length L bits, and we encode to a codeword of length n > L.
Shannon’s random codebook argument. We flip n2" fair coins independently, and populate a 2L x n
codebook accordingly (2© codewords, each with length n).
Y is a string with values {0, 1, e}.

Theorem 5. The capacity of the BEC with error probability p is 1 — p.

Proof. Note that we can do no better than 1 — p, since we can just resend the erased bits.

Oracle argument. Since the channel erases fraction p of the input bits, the relaible rate of communication
is 1 — p bits per channel use.

We show that we can achieve a rate of R :=1 —p — ¢ for any ¢ > 0.

Suppose the first codeword is sent.

WLOG, assume first n(1 — p) symbols came through.

Then, we have:

2L
P(error) =P U{C1 = ¢i}
i=2
oL 1
< ZIP’(cl = Ci) ]P((fl = Cz’) = on(1—p) (2.6)
i=2

=(2F—1).20-P
~2br(-p) [ — R

=920 L gasn—s00 R<1—p

Fact: In BEC, P(error) < 2 (1-—p=H),



Chapter 3

Random processes

1 MC

Markov chain: (X)X

1, where X, is the state at time n.

Chapman-Kolmogorov equation for n-step transition probability:

n . . .. n—1
P} = P(going from state i to state j in n steps) = Z P}~ - Py
kEX

A MC is irreducible if we can reach any state from any other state.
Periodicity: if irreducible, ged of all path length to return (if irreducible, same d(z) for all states i):

d(i) = ged{n > 1|P]} > 0}

A MC is reversible if its stationary distribution 7 and transition probability matrix P satisfy the

detailed balance equation:

m(x)P(z,y) = n(y)P(y,x) Vr,ye X (3.1)

Fact: Start with a graph for an irreducible, pos. recurrent MC. Remove all arrows, multiple edges between
nodes and loops. If the resulting graph is a tree, then MC is reversible and its stationary distribution
satisfies DBE.

Backwards Markov property:

]P)(Xn = xn’Xn—i—l = Tn41y--- )Xn+l<: = xn—i—k) = ]P)(Xn = xn’Xn—i—l = xn—i—l)

Fact: Given a reversible MC (X,,),,>o with stationary distribution 7.
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If Xg ~ 7, then Vn € N, the chain up to time n is equal in distribution to its reverse:

i
L

P(Xon = 20m) = P(Xp = 2) [ [ P(Xk = 24| X1 = 2141)  backwards MP

k=0
n—1
P(Xyi1 = X =) P(Xy =
= P(X, = z,) (Xpr1 = 21| X = 25) P(Xy = 21) Bayes rule
k=0 P(Xk41 = Tp41)
= () H (@) P, Do) stationarity
0 7 (Tpr1) (3.2)
n—1
= 7(z,) H P(zg41, ) reversibility
k=0
n—1
= P(Xo = ) | [P(Xnt = 26| Xpopo1 = 2111)
k=0
- IP>()(O:n - In:O)

A state i is transient if given that we start in state ¢, there is nonzero probability that we never return
to that state q.
Let T, = min{n > 1| Xy = =} denote number of steps to first return to state = € X"

1 if recurrent
e If MC is irreducible, then P(7, < co| Xy =x) =
< 1 if transient

i < oo postitive recurrent
e If MC is recurrent, then E[T, | Xy = z] = E,[T,[] =
oo null recurrent
Fact: A random walk reflected at 0 with probability of moving to the right p is:
e if p < 1/2, positive recurrent

e if p = 1/2, null recurrent

e if p > 1/2, transient




EECS 126 Midterm 2 Spring 2025

1.1 Big theorem

Big theorem for a finite state MC:

reducible @

irreducible

all states!

trans. null rec.
no m* no w*
periodic, no convergence aperiodic, m, — 7*

Example: [FA23 Q5 Ehrenfest’s diffusion model]

T =m P i+ TP =12, K—1

Fact: A finite state, irreducible MC that is undirected has a stationary distribution (i) = 2l E|') and is
reversible.

1.2 DTMC

Stationary distribution: 7P = 7, where Y " jm =1, m = [mo m1 ... ™).

Fact: If a Markov chain starts at the stationary distribution, then every future state X; is also distributed

according to 7 for ¢t > 0.

Theorem 6. Suppose that the Markov chain is irreducible with a stationary disitribution w. Then, for

each state x € X':

1
Proof.
t total time
o R[] - — (3.4)
>oiso lxies number of visits to x
Then, we have:
1 1
- 1x_, — 3.5
D AT 39
1=0
where expectation of LHS is 1 31~ JP(X; = 2).
If we start chain at the stationary distribution, then P(X; = x) = n(z). O
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2 PP

Poisson process: events that occur independently with some average rate .
Let S; be interarrival time between (i — 1)th and ith arrival, where S; ~ Exp(\) are i.i.d.
Poisson splitting, Poisson merging.

Fact: P(N(t)=k) = (M)Zfﬂt, where N(t) is the number of arrivals on [0, ¢].

Stationary, independent increments.

2.1 Erlang

Erlang(n; A) is a sum of n i.i.d. exponential RVs with rate A.
Then, the distribution of ith arrival time T; = S + - -+ + S; ~ Erlang(i; \) is:

)\itiflef)\t

fr,(t) = N fort > 0 (3.6)

Proof. Assume 0 < t; <ty < - -+ < t,.

oyt te, .. t) = fo s, (t1,te — L1, ...t — ;1)
- fSl(tl) : fSQ(t2 - tl) """ fSl(t - ti—l)

= )\G_Atl . )\B_A(tQ_tl) .. )\e_k(t_tifl)

— )\26—)\15

(3.7)

Then, we have:

t t
_ / . / )\ie_ktdtldtQ . dti—l (38)
0 0

)\ie—ktti—l
T (i— 1)
Fact: E[T};| =

2.2 Random incidence property (RIP)

Length of the interval with the arbitrary time point we choose will be Erlang(2; \)
Example: [Disc 10 Q2 Bus arrival at Cory]

10



	1 Convergence
	1 Convergence almost surely
	2 Convergence in probability
	3 Convergence in distribution

	2 Information theory
	1 AEP
	2 Huffman coding
	3 Entropy
	4 Mutual information
	5 Capacity
	5.1 Binary erasure channel (BEC)


	3 Random processes
	1 MC
	1.1 Big theorem
	1.2 DTMC

	2 PP
	2.1 Erlang
	2.2 Random incidence property (RIP)



