# Contents

| 1 | Con  | nvergence                                       | 2  |
|---|------|-------------------------------------------------|----|
|   | 1    | Convergence almost surely                       | 2  |
|   | 2    | Convergence in probability                      | 3  |
|   | 3    | Convergence in distribution                     | 3  |
| 2 | Info | ormation theory                                 | 4  |
|   | 1    | AEP                                             | 4  |
|   | 2    | Huffman coding                                  | 5  |
|   | 3    | Entropy                                         | 5  |
|   | 4    | Mutual information                              | 5  |
|   | 5    | Capacity                                        | 6  |
|   |      | 5.1 Binary erasure channel (BEC)                | 6  |
| 3 | Ran  | ndom processes                                  | 7  |
|   | 1    | MC                                              | 7  |
|   |      | 1.1 Big theorem                                 | 9  |
|   |      | 1.2 DTMC                                        | 9  |
|   | 2    | PP                                              | 10 |
|   |      | 2.1 Erlang                                      | 10 |
|   |      | 2.2 Random incidence property (RIP)             | 10 |
|   | Spri | ng 2025, taught by Professor Kannan Ramchandran |    |

## Chapter 1

## Convergence

Modes of convergence:

almost surely  $\Rightarrow$  in probability  $\Rightarrow$  in distribution

### 1 Convergence almost surely

$$X_n \xrightarrow{a.s.} X \iff \mathbb{P}(\{w \in \Omega : \lim_{n \to \infty} X_n = X\}) = 1 \iff \mathbb{P}(\lim_{n \to \infty} X_n \neq X) = 0 \tag{1.1}$$

**Theorem 1** (SLLN). If  $(X_n)_{n=1}^{\infty}$  are i.i.d. with finite mean  $\mathbb{E}[X_1] < \infty$ , then the sample mean  $\bar{X}_n$  converges almost surely to the true mean:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s.} \mathbb{E}[X_1]$$

**Lemma 1** (Borel-Cantelli lemma). Let  $(A_n)_{n=1}^{\infty}$  be a collection of events.

The event that  $A_n$  happens infinitely often is:

$$A_n i.o. = \lim \sup_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} \bigcup_{k \ge n} A_k$$
 (1.2)

**Fact:** If  $w \in A_n$  i.o., then  $\forall n \ge 1 : \exists k \ge n \text{ s.t. } w \in A_k$ .

Otherwise, there is a max N s.t.  $w \notin A_k \quad \forall k \geq N$ , i.e. w only appears in finitely many  $A_n$ .

- (i) If  $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$ , then  $\mathbb{P}(A_n \text{ i.o.}) = 0$
- (ii) If  $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$  and  $(A_n)_{n=1}^{\infty}$  are independent, then  $\mathbb{P}(A_n \text{ i.o.}) = 1$

**Fact:** If we define  $A_n := \{w \in \Omega : |X_n(w) - X(w)| \ge \epsilon\}$ , then we can show that  $A_n$  is th event the sequence  $X_n$  is not converging to X (i.e. diverges and  $\lim_{n\to\infty} X_n(w) \ne X(w)$ ).

So, if 
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$$
, then  $\mathbb{P}(A_n \text{ i.o.}) = 0$ , and  $X_n \xrightarrow{a.s.} X$ .

Some applications of almost sure convergence:

- In DTMC, the proportion of time spent in a state converges a.s. to the inverse of the expected time it takes to revisit that state (given a few assumptions).
- If  $(X_n)_{n=1}^{\infty}$  over a finite alphabete, then the average suprise  $-\frac{1}{n}\log_2 p(X_1,\ldots,X_n)$  converges a.s. to the entropy H(X). This is called asymptotic equipartition property.
- In machine learning, we can ask if the iterates of the *stochastic gradient descent* algorithm converge a.s. to the true minimizer of the given function.

### 2 Convergence in probability

$$X_n \xrightarrow{\mathbb{P}} X \iff \lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0 \quad \forall \epsilon > 0$$
 (1.3)

### 3 Convergence in distribution

$$X_n \xrightarrow{d} X \iff \lim_{n \to \infty} \mathbb{P}(X_n \le x) = \mathbb{P}(X \le x) \quad \forall x \in \mathbb{R} : \mathbb{P}(X = x) = 0$$
 (1.4)

Equivalently,  $p_{X_n} \to p_X$  for discrete RV and  $f_{X_n} \to f_X$  for continuous RV.

**Theorem 2** (Central Limit theorem). If  $(X_n)_{n=1}^{\infty}$  are i.i.d. with mean  $\mu$  and variance  $\sigma^2$ , then the standard score of the sample mean  $\bar{X}_n$  converges in distirbution to the standard normal distribution.

$$\frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} \xrightarrow{d} \mathcal{N}(0, 1) \tag{1.5}$$

## Chapter 2

## Information theory

**Shannon's separation theorem.** Source coding and channel coding can be done separately without loss of optimality.

- SC: cannot compress an i.i.d. source X "on average" asymptotically below the *entropy* of the source X, H(X).
- CC: cannot transmit reliably at rate R above channel capacity C.

**Theorem 3** (Source Coding Theorem). For an i.i.d. sequence  $X_1, \ldots, X_n$  and an arbitrarily small  $\epsilon > 0$ , there is a source coding scheme for which

$$\lim_{n \to \infty} \mathbb{E}\left[\frac{1}{n}l(X_1, \dots, X_n)\right] \le H(X) + \epsilon \text{ bits per symbol}$$
 (2.1)

s.t. the sequence  $X_1, \ldots, X_n$  can be recovered from the encoding with a high probability  $(1 - \epsilon)$ .

#### 1 AEP

**Fact:** A typical set in flipping n coins with a probability of heads p is when there are np heads and n(1-p) tails, the expected number of heads and tails.

Then, the probability of a typical sequence is:

$$p^{np}(1-p)^{n(1-p)} = 2^{\log(p^{np}(1-p)^{n(1-p)})} = 2^{n(p\log p + (1-p)\log(1-p))} = 2^{-nH(p)} = 2^{\mathbb{E}[\log p_X(X)^n]}$$
(2.2)

The  $\epsilon$ -typical set  $A_{\epsilon}^{(n)}$  is a set of sequences s.t.

$$2^{-n(H(X)+\epsilon)} \le p_{X^{(n)}}(x_1, \dots, x_n) \le 2^{-n(H(X)-\epsilon)}$$
(2.3)

where  $|A_{\epsilon}^{(n)}| \approx 2^{nH(X)}$ .

Note that the size of the set of all possible sequence is  $|\mathcal{X}|^n = 2^{n \log |X|}$ .

Since  $\log |\mathcal{X}|$  is the entropy of the uniform distribution  $\mathcal{X}$ , we have that  $H(X) \leq \log |\mathcal{X}|$ .

**Theorem 4** (Asymptotic Equipartition Property). If  $X_1, \ldots, X_n \sim p_{X^n}$  i.i.d., then

$$-\frac{1}{n}\log_2 p_{X^n}(x_1, \dots, x_n) \xrightarrow{i.p.} H(X)$$

$$\iff \mathbb{P}\left(\left|-\frac{1}{n}\log_2 p_{X^n}(x_1, \dots, x_n) - H(X)\right| > \epsilon\right) \to 0 \text{ as } n \to \infty$$

$$\mathbb{P}(2^{-n(H(X) + \epsilon)} < p_{X^n}(x_1, \dots, x_n) < 2^{-n(H(X) - \epsilon)}) \to 1$$

$$(2.4)$$

### 2 Huffman coding

Expected Huffman code length is between H(X) and H(X) + 1.

### 3 Entropy

Entropy of the DRV X:

$$H(X) = \mathbb{E}[-\log p(X)] = \mathbb{E}\left[\log_2 \frac{1}{p(X)}\right] = \sum_{x \in X} p(x) \log_2 \left(\frac{1}{p(x)}\right)$$

#### Properties of entropy:

- 1.  $H(X) \ge 0$ .
- 2. Joint entropy:  $H(X,Y) = \mathbb{E}\left[\log_2 \frac{1}{p(X,Y)}\right] = \sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x,y) \log \frac{1}{p_{X,Y}(x,y)}$
- 3. Conditional entropy:  $H(Y|X) = \mathbb{E}\left[\log_2 \frac{1}{p(Y|X)}\right] = \sum_x p(x) \sum_y p(y|x) \log \frac{1}{p(y|x)} \le H(Y)$ Note that conditioning only decreases entropy.
- 4. Chain rule: H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)Note that H(Y) = H(X,Y) - H(X|Y) is the remaining amount of uncertainty after observing X.

Entropy is maximized when the distribution is uniform.

### 4 Mutual information

Average amount of information that X provides about Y:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y)$$

### 5 Capacity

$$C(BEC(p)) = 1 - p \ge C(BSC(p)) = 1 - h(p).$$

$$C = \max_{p_X} I(X;Y) = \max_{p_X} H(X) - H(X|Y) \text{ bits per channel use}$$
 (2.5)

Each bit we send carries C bits of information.

#### 5.1 Binary erasure channel (BEC)

Ensure reliability by redundancy of (1-p)n unerased bits. Map one message only to one codeword. In general, the rate is  $R := \frac{L}{n}$ .

**Fact:** We wish to send a message of length L bits, and we encode to a codeword of length n > L.

Shannon's random codebook argument. We flip  $n2^L$  fair coins independently, and populate a  $2L \times n$  codebook accordingly ( $2^L$  codewords, each with length n).

 $\mathcal{Y}$  is a string with values  $\{0, 1, e\}$ .

**Theorem 5.** The capacity of the BEC with error probability p is 1 - p.

*Proof.* Note that we can do no better than 1-p, since we can just resend the erased bits.

Oracle argument. Since the channel erases fraction p of the input bits, the relaible rate of communication is 1-p bits per channel use.

We show that we can achieve a rate of  $R := 1 - p - \epsilon$  for any  $\epsilon > 0$ .

Suppose the first codeword is sent.

WLOG, assume first n(1-p) symbols came through.

Then, we have:

$$\mathbb{P}(\text{error}) = \mathbb{P}\left(\bigcup_{i=2}^{2^{L}} \{c_{1} = c_{i}\}\right) 
\leq \sum_{i=2}^{2^{L}} \mathbb{P}(c_{1} = c_{i}) \quad \mathbb{P}(c_{1} = c_{i}) = \frac{1}{2^{n(1-p)}} 
= (2^{L} - 1) \cdot 2^{-n(1-p)} 
\approx 2^{L-n(1-p)} \quad L = nR 
= 2^{-n(1-p-R)} \to 0 \text{ as } n \to \infty \quad R < 1-p$$
(2.6)

**Fact:** In BEC,  $\mathbb{P}(\text{error}) \leq 2^{-n(1-p-R)}$ .

## Chapter 3

### Random processes

#### 1 MC

Markov chain:  $(X_n)_{n=1}^N$ , where  $X_n$  is the state at time n.

Chapman-Kolmogorov equation for n-step transition probability:

$$P_{ij}^n = \mathbb{P}(\text{going from state } i \text{ to state } j \text{ in } n \text{ steps}) = \sum_{k \in \mathcal{X}} P_{ik}^{n-1} \cdot P_{kj}$$

A MC is *irreducible* if we can reach any state from any other state.

*Periodicity*: if irreducible, gcd of all path length to return (if irreducible, same d(i) for all states i):

$$d(i) = \gcd\{n \ge 1 | P_{ii}^n > 0\}$$

A MC is reversible if its stationary distribution  $\pi$  and transition probability matrix P satisfy the detailed balance equation:

$$\pi(x)P(x,y) = \pi(y)P(y,x) \quad \forall x, y \in \mathcal{X}$$
(3.1)

**Fact:** Start with a graph for an irreducible, pos. recurrent MC. Remove all arrows, multiple edges between nodes and loops. If the resulting graph is a tree, then MC is reversible and its stationary distribution satisfies DBE.

Backwards Markov property:

$$\mathbb{P}(X_n = x_n | X_{n+1} = x_{n+1}, \dots, X_{n+k} = x_{n+k}) = \mathbb{P}(X_n = x_n | X_{n+1} = x_{n+1})$$

**Fact:** Given a reversible MC  $(X_n)_{n\geq 0}$  with stationary distribution  $\pi$ .

If  $X_0 \sim \pi$ , then  $\forall n \in \mathbb{N}$ , the chain up to time n is equal in distribution to its reverse:

$$\mathbb{P}(X_{0:n} = x_{0:n}) = \mathbb{P}(X_n = x_n) \prod_{k=0}^{n-1} \mathbb{P}(X_k = x_k | X_{k+1} = x_{k+1}) \quad \text{backwards MP} \\
= \mathbb{P}(X_n = x_n) \prod_{k=0}^{n-1} \frac{\mathbb{P}(X_{k+1} = x_{k+1} | X_k = x_k) \mathbb{P}(X_k = x_k)}{\mathbb{P}(X_{k+1} = x_{k+1})} \quad \text{Bayes rule} \\
= \pi(x_n) \prod_{k=0}^{n-1} \frac{\pi(x_k) P(x_k, x_{k+1})}{\pi(x_{k+1})} \quad \text{stationarity} \\
= \pi(x_n) \prod_{k=0}^{n-1} P(x_{k+1}, x_k) \quad \text{reversibility} \\
= \mathbb{P}(X_0 = x_n) \prod_{k=0}^{n-1} \mathbb{P}(X_{n-k} = x_k | X_{n-k-1} = x_{k+1}) \\
= \mathbb{P}(X_{0:n} = x_{n:0})$$

A state i is transient if given that we start in state i, there is nonzero probability that we never return to that state i.

Let  $T_x = \min\{n \geq 1 \mid X_0 = x\}$  denote number of steps to first return to state  $x \in \mathcal{X}$ .

- If MC is irreducible, then  $\mathbb{P}(T_x < \infty | X_0 = x) = \begin{cases} 1 \text{ if recurrent} \\ < 1 \text{ if transient} \end{cases}$
- If MC is recurrent, then  $\mathbb{E}[T_x \mid X_0 = x] = \mathbb{E}_x[T_x^+] = \begin{cases} < \infty \text{ postitive recurrent} \\ \infty \text{ null recurrent} \end{cases}$

**Fact:** A random walk reflected at 0 with probability of moving to the right p is:

- if p < 1/2, positive recurrent
- if p = 1/2, null recurrent
- if p > 1/2, transient



#### 1.1 Big theorem

Big theorem for a finite state MC:



**Example:** [FA23 Q5 Ehrenfest's diffusion model]

$$\pi_i = \pi_{i-1} P_{i-1,i} + \pi_{i+1} P_{i+1,i}$$
  $i = 1, 2, \dots, K-1$ 

**Fact:** A finite state, irreducible MC that is *undirected* has a stationary distribution  $\pi(i) = \frac{\deg(i)}{2|E|}$  and is reversible.

#### 1.2 DTMC

Stationary distribution:  $\pi P = \pi$ , where  $\sum_{i=0}^{n} \pi_i = 1$ ,  $\pi = [\pi_0 \ \pi_1 \ \dots \ \pi_n]$ .

Fact: If a Markov chain starts at the stationary distribution, then every future state  $X_t$  is also distributed according to  $\pi$  for  $t \geq 0$ .

**Theorem 6.** Suppose that the Markov chain is irreducible with a stationary distribution  $\pi$ . Then, for each state  $x \in \mathcal{X}$ :

$$\pi(x) = \frac{1}{\mathbb{E}[T_x^+]} \tag{3.3}$$

Proof.

$$\frac{t}{\sum_{i=0}^{t-1} \mathbf{1}_{X_i=x}} \to \mathbb{E}_x[T_x^+] \quad \frac{\text{total time}}{\text{number of visits to } x}$$
(3.4)

Then, we have:

$$\frac{1}{t} \sum_{i=0}^{t-1} \mathbf{1}_{X_i = x} \to \frac{1}{\mathbb{E}_x[T_x^+]} \tag{3.5}$$

where expectation of LHS is  $\frac{1}{t} \sum_{i=0}^{t-1} \mathbb{P}(X_i = x)$ .

If we start chain at the stationary distribution, then  $\mathbb{P}(X_i = x) = \pi(x)$ .

#### 2 PP

Poisson process: events that occur independently with some average rate  $\lambda$ .

Let  $S_i$  be interarrival time between (i-1)th and ith arrival, where  $S_i \sim \text{Exp}(\lambda)$  are i.i.d. Poisson splitting, Poisson merging.

Fact:  $\mathbb{P}(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ , where N(t) is the number of arrivals on [0, t]. Stationary, independent increments.

#### 2.1 Erlang

Erlang $(n; \lambda)$  is a sum of n i.i.d. exponential RVs with rate  $\lambda$ .

Then, the distribution of ith arrival time  $T_i = S_1 + \cdots + S_i \sim \text{Erlang}(i; \lambda)$  is:

$$f_{T_i}(t) = \frac{\lambda^i t^{i-1} e^{-\lambda t}}{(i-1)!} \quad \text{for } t \ge 0$$
 (3.6)

Proof. Assume  $0 < t_1 < t_2 < \cdots < t_n$ .

$$f_{T_{1},\dots,T_{i}}(t_{1},t_{2},\dots,t) = f_{S_{1},\dots,S_{i}}(t_{1},t_{2}-t_{1},\dots,t-t_{i-1})$$

$$= f_{S_{1}}(t_{1}) \cdot f_{S_{2}}(t_{2}-t_{1}) \cdot \dots \cdot f_{S_{i}}(t-t_{i-1})$$

$$= \lambda e^{-\lambda t_{1}} \cdot \lambda e^{-\lambda(t_{2}-t_{1})} \cdot \dots \cdot \lambda e^{-\lambda(t-t_{i-1})}$$

$$= \lambda^{i} e^{-\lambda t}$$

$$(3.7)$$

Then, we have:

$$f_{T_{i}}(t) = \int_{0}^{t} \cdots \int_{0}^{t} f_{T_{1},\dots,T_{i}}(t_{1}, t_{2}, \dots, t) dt_{1} dt_{2} \cdots dt_{i-1}$$

$$= \int_{0}^{t} \cdots \int_{0}^{t} \lambda^{i} e^{-\lambda t} dt_{1} dt_{2} \cdots dt_{i-1}$$

$$= \frac{\lambda^{i} e^{-\lambda t} t^{i-1}}{(i-1)!}$$
(3.8)

Fact:  $\mathbb{E}[T_i] = \frac{i}{\lambda}$ ,  $var(T_i) = \frac{i}{\lambda^2}$ .

### 2.2 Random incidence property (RIP)

Length of the interval with the arbitrary time point we choose will be  $Erlang(2; \lambda)$ 

**Example:** [Disc 10 Q2 Bus arrival at Cory]