Contents

1	Numbers		
	1.1	Real numbers	3
	1.2	Proof by induction	4
	1.3	sup, inf	4
2	Sequences		
	2.1	Defintion of limits	5
		2.1.1 Properties of limits	5
	2.2	limsup, liminf	7
	2.3	Monotone sequences*	8
	2.4	Cauchy	8
	2.5	Subsequences	10
	2.6	B-W theorem	10
3	Series		11
	3.1	Three tests	12
4	Lim	ait of a function	13
		4.0.1 Classes of sets	13
5	Con	ntinuous function	14
	5.1	Uniform continuity	14
	5.2	Intermediate value theorem	17
6	Differentiable function		18
	6.1	Derivative	18
		6.1.1 Properties	18
	6.2	Mean value theorem	19
	6.3		20
	6.4	L'Hospital's rule	20

8.6

8.7

Final

9

33

34

Numbers

1.1 Real numbers

Theorem 1 (Completeness axiom). Every nonempty set S of real numbers that is bounded from above has a supremum, i.e. $\sup S$ exists.

Corollary 1 (Archimedean Property). If a > 0 and b > 0, then for some positive integer n, we have na > b.

Proof. Define $S = \{na | n \in \mathbb{N}\}.$

(Proof by contradiction.) Assume this corrollary is wrong, i.e. $\forall s_0 \in S : s_0 \leq b$. Thus, b is an upper bound of S and $\sup S \neq \infty$.

Let $s^* = \sup S \neq \infty$. Then, $s^* - a < s^*$ since a > 0.

Also, $s^* - a$ is not the upper bound of S. Thus, there exists $n \in \mathbb{N}$ s.t. $na > s^* - a$.

Then, we have:

$$(n+1)a = na + a > s^* - a + a = s^*$$

Contradiction. s^* is not upper bound of S anymore.

Corollary 2 (Denseness of \mathbb{Q}). If $a, b \in \mathbb{Q}$ and a < b, then there is a rational $r \in \mathbb{Q}$ such that a < r < b.

Proof. It suffices to show there exists $m, n \in \mathbb{Z}$ such that $a < \frac{m}{n} < b$.

Since b-a>0, using Archimedean property, there exists $n\in\mathbb{N}$ such that n(b-a)>1.

Then, nb > na + 1. Thus, there exists $m \in \mathbb{Z}$ s.t. nb > na

1.2 Proof by induction

Theorem 2. Suppose that $A \subset \mathbb{N}$ is a set of natural numbers s.t.

- (a) $1 \in A$
- (b) $n \in A$ implies $(n+1) \in A$.

Then $A = \mathbb{N}$.

1.3 sup, inf

Definition 1. Suppose $A \subset \mathbb{R}$ is a set of real numbers.

- $\sup A$ is the lowest upper bound.
- inf A is the greatest lower bound.

Key: Given $\epsilon > 0$, there exists $a \in A$ s.t. $a \le \sup A < a + \epsilon$.

Sequences

2.1 Defintion of limits

Definition 2 (Limit of a sequence). Given a sequence (x_n) .

$$\lim_{n \to \infty} x_n = x \Leftrightarrow \forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ s.t. } |x_n - x| < \epsilon \quad \forall n > N$$

Definition 3. Given a sequence (x_n) .

- $\lim_{n\to\infty} x_n = \infty \Leftrightarrow \forall M \in \mathbb{R} : \exists N \in \mathbb{N} \text{ s.t. } x_n > M \quad \forall n > N$
- $\lim_{n\to\infty} x_n = -\infty \Leftrightarrow \forall M \in \mathbb{R} : \exists N \in \mathbb{N} \text{ s.t. } x_n < M \quad \forall n > N$

2.1.1 Properties of limits

Key: $\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} |x_n - x| = 0.$

Proposition 1 (Uniqueness). Limit is unique.

Proof. (Proof by contradiction.) Assume $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} x_n = x'$ s.t. $x \neq x'$. By definition, $\forall \epsilon > 0 : \exists N, N' > 0$ s.t. $|x_n - x| < \epsilon/2 \quad \forall n > N$ and $|x_n - x'| < \epsilon/2 \quad \forall n > N'$. Then, we have:

$$|x - x'| = |x - x_n + x_n - x'| \le |x - x_n| + |x_n - x'| < \epsilon/2 + \epsilon/2 = \epsilon$$

By deifnition, $\lim_{n\to\infty} |x-x'| = 0$. So, x = x'.

Theorem 3 (Boundness). If limit exists, then sequence (x_n) is bounded.

Proof. Let $\lim_{n\to\infty} x_n = x$. Then, $\exists N > 0$ s.t. $|x_n - x| < 1 \quad \forall n > N$. Thus, $\forall n > N : |x_n| = |x_n - x + x| \le |x_n - x| + |x| < |x| + 1$, which is a constant.

Let $M = \max(|x_1|, \dots, |x_N|, |x| + 1)$.

Then, we have $|x_n| \leq M \quad \forall n \in \mathbb{N}$, and the sequence (x_n) is bounded.

Theorem 4 (Exchange the order of limits and algebraic operations). Given $(x_n), (y_n)$ are convergent sequences $(\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y), c \in \mathbb{R}$.

Then, sequences $(cx_n), (x_n + y_n), (x_n \cdot y_n)$ are convergent, and:

- $\lim_{n\to\infty} cx_n = cx$ Choose $|x_n x| < \epsilon/|c|$.
- $\lim_{n\to\infty} (x_n + y_n) = x + y$ Choose $|x_n x| < \epsilon/2 \ \forall n > N_1, \ |y_n y| < \epsilon/2 \ \forall n > N_2.$
- $\lim_{n\to\infty} (x_y \cdot y_n) = xy$ $\exists M > 0 \text{ s.t. } |x_n|, |y_n| \le M \ \forall n. \ |x_ny_n xy| \le |x_n||y_n y| + |y||x_n x|.$

Theorem 5 (Preserve monotonicity). If $(x_n), (y_n)$ are convergent and $x_n \leq y_n \quad \forall n \in \mathbb{N}$, then:

$$\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$$

Proof. By defintion, $\forall \epsilon > 0$: $\exists N_1, N_2 > 0$ s.t. $|x_n - x| < \epsilon/2 \quad \forall n > N_1$ and $|y_n - y| < \epsilon/2 \quad \forall n > N_2$. Thus, $y - \epsilon/2 < y_n < y + \epsilon/2$.

Choose $N = \max(N_1, N_2)$. Then, we have $\forall n > N$:

$$x = x_n + x - x_n < y_n + \frac{\epsilon}{2} < y + \frac{\epsilon}{2} + \frac{\epsilon}{2} = y + \epsilon \quad \forall \epsilon > 0$$

i.e. $x \leq y$.

Theorem 6 (Squeeze theorem*). Let $(x_n), (y_n)$ be the convergent sequences with the same limit L. If a sequence (z_n) is such that

$$x_n \le z_n \le y_n \quad \forall n \in \mathbb{N}$$

then (z_n) also converges to L.

2.2 limsup, liminf

Theorem 7. Given a sequence (x_n) . Then:

$$y = \lim \sup_{n \to \infty} x_n$$

iff $y \in [-\infty, \infty]$ satisfies one of the following:

- (1) $y \in (-\infty, \infty)$: $\forall \epsilon > 0$
 - (a) $\exists N \in \mathbb{N} \text{ s.t. } x_n < y + \epsilon \quad \forall n > N$
 - (b) $\forall N \in \mathbb{N} : \exists n > N \text{ s.t. } x_n > y \epsilon$
- (2) $y = \infty$: $\forall M \in \mathbb{R} : \exists n \in \mathbb{N} \text{ s.t. } x_n > M, \text{ i.e. } (x_n) \text{ is not bounded from above}$
- (3) $y = -\infty$: $\forall m \in \mathbb{R} : \exists N \in \mathbb{N} \text{ s.t. } x_n < m \quad \forall n > N, \text{ i.e. } x_n \to -\infty \text{ as } n \to \infty$

Similarly:

$$z = \lim \inf_{n \to \infty} x_n$$

iff $z \in [-\infty, \infty]$ satisfies one of the following:

- (1) $z \in (-\infty, \infty)$: $\forall \epsilon > 0$
 - (a) $\exists N \in \mathbb{N} : x_n > z \epsilon \quad \forall n > N$
 - (b) $\forall N \in \mathbb{N} : \exists n > N \text{ s.t. } x_n < z + \epsilon$
- (2) $x = \infty$: $\forall M \in \mathbb{R} : \exists N \in \mathbb{N} \text{ s.t. } x_n > M \quad \forall n > N, \text{ i.e. } x_n \to \infty \text{ as } n \to \infty$
- (3) $x = -\infty$: $\forall m \in \mathbb{R} : \exists n \in \mathbb{N} \text{ s.t. } x_n < m, \text{ i.e. } (x_n) \text{ is not bounded from below}$

Theorem 8.

$$\lim_{n \to \infty} x_n = x \Leftrightarrow \limsup x_n = \liminf x_n = x$$

Proof. For \Leftarrow : Given $\limsup x_n = \liminf x_n = x$.

Note that $\lim_{n\to\infty} \sup\{x_k : k \ge n\} = x$ decreases and $\lim_{n\to\infty} \inf\{x_k : k \ge n\} = x$ increases as $n\to\infty$.

Let $z_n = \inf\{x_k : k \ge n\}$, which is monotone increasing and bounded above. Let $y_n = \sup\{x_k : k \ge n\}$.

Then, we have: $x - \epsilon < z_n \le x_n \le y_n < x + \epsilon \quad \forall \epsilon > 0.$

For \Rightarrow : Given $\lim x_n = x$.

By definition, $\forall \epsilon > 0 : \exists N > 0 \text{ s.t. } |x_n - x| < \epsilon, \text{ i.e. } x - \epsilon < x_n < x + \epsilon \quad \forall n > N.$

Then, we have: $x - \epsilon < z_n \le x_n \le y_n < x + \epsilon$. Thus, $\lim z_n = \lim y_n = x = \lim \sup x_n = \lim \inf x_n$. \square

Corollary 3.

$$\lim_{n \to \infty} x_n = x \Leftrightarrow \limsup |x_n - x| = 0$$

Key: $\limsup x_n \le \limsup x_n$.

Proof. Note that $\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} |x_n - x| = 0 = \limsup |x_n - x|$. Conversely, if $\limsup |x_n - x| = 0$, we have:

$$0 \le \liminf |x_n - x| \le \limsup |x_n - x| = 0$$

i.e. $\liminf |x_n - x| = \limsup |x_n - x| = 0$ and thus $\lim x_n = x$.

Problem: Prove $\liminf x_n = -\limsup(-x_n)$ for any sequence (x_n) .

Proof. Let $x_N = \inf\{x_n : n > N\} = -\sup\{-x_n : n > N\}$. Then, we have:

$$\lim_{N \to \infty} x_N = \lim \inf x_n = -\lim \sup(-x_n)$$

2.3 Monotone sequences*

Theorem 9. A monotone sequence converges iff it is bounded.

- If (x_n) is monotone increasing, bounded, then $\lim_{n\to\infty} x_n = \sup\{x_n : n \in \mathbb{N}\}.$
- If (x_n) is monotone decreasing, bounded, then $\lim_{n\to\infty} x_n = \inf\{x_n : n \in \mathbb{N}\}.$

2.4 Cauchy

Definition 4 (Cauchy sequence). Given (x_n) , we say (x_n) is a Cauchy sequence if $\forall \epsilon > 0 : \exists N > 0$ s.t. $\forall n, m > N$ we have $|x_n - x_m| < \epsilon$.

Theorem 10. (x_n) converges $\Leftrightarrow x_n$ is a Cauchy sequence.

Proof. For \Rightarrow : Given $\lim_{n\to\infty} \overline{x_n = x}$. By definition, $\forall \epsilon > 0 : \exists N > 0 \text{ s.t. } |x_n - x| < \epsilon/2 \quad \forall n > N$. Then, we have $\forall n, m > N$:

$$|x_n - x_m| = |x_n - x + x - x_m| \le |x_n - x| + |x - x_m| < \epsilon/2 + \epsilon/2 = \epsilon$$

For \Leftarrow : Given (x_n) is Cauchy.

Choose $\epsilon = 1$. Then, $\exists N_1 > 0$ s.t. $\forall n, m > N_1$: $|x_n - x_m| < 1$.

Thus, if $m > N_1$:

$$|x_m| = |x_m - x_{N_1+1} + x_{N_1+1}| \le |x_m - x_{N_1+1}| + |x_{N_1+1}| \le 1 + |x_{N_1+1}|$$

i.e. (x_n) is bounded. Thus, its limsup and liminf exist and are finite.

Let $\limsup_{n\to\infty} x_n = a$, and we prove $\lim_{n\to\infty} x_n = a$.

- (1) By property of limsup, $\forall \epsilon > 0 : \exists N_{\epsilon} > 0 \text{ s.t. } x_n \leq a + \epsilon/2 \quad \forall n > N_{\epsilon}$
- (2) By definition of Cauchy sequence, $\forall \epsilon > 0: \exists N' > 0 \text{ s.t. } |x_n x_m| < \epsilon/2 \quad \forall n, m > N'$
- (3) By property of limsup again, $\forall \epsilon > 0 : \exists n^* > \max(N_{\epsilon}, N') \text{ s.t. } x_{n^*} > a \epsilon/2$

Combining (1) and (3), we have: $|x_{n^*} - a| < \epsilon/2 \quad \forall n^* > \max(N_{\epsilon}, N')$

Combining (2) and above, we have: $|x_n - a| = |x_n - x_{n^*} + x_{n^*} - a| \le |x_n - x_{n^*}| + |x_{n^*} - a| < \epsilon/2 + \epsilon/2 = \epsilon$ Thus, $\lim_{n \to \infty} x_n = a$ by defintion.

Problem: [Exercise 10.6]

(a) Let (s_n) be a sequence s.t. $|s_{n+1} - s_n| < \frac{1}{2^n} \quad \forall n \in \mathbb{N}$. Prove (s_n) is Cauchy.

Proof. Choose m > n > N > 0:

$$|s_n - s_m| \le |s_n - s_{n+1}| + |s_{n+1} - s_{n+2}| + \dots + |s_{m-1} - s_m| \le \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} \le 2^{-N} < \epsilon$$

for large enough N >> 1.

(b) Does it hold if $|s_{n+1} - s_n| < \frac{1}{n} \quad \forall n \in \mathbb{N}$?

Solution: No. Consider $s_n = \sum_{k=1}^n \frac{1}{k} \to \infty$ as $n \to \infty$. Thus, the sequence (s_n) is not bounded from above, and (s_n) cannot be Cauchy. However, $s_{n+1} - s_n = \frac{1}{n+1} < \frac{1}{n}$ is satisfied.

2.5 Subsequences

Proposition 2. Every subsequence of a a convergent sequence converges to the limit of the sequence.

Proof. Given a sequence (x_n) and $\lim_{n\to\infty} x_n = x$. Fix $\epsilon > 0$.

By definition, there exists N > 0 s.t. $|x_n - x| < \epsilon \quad \forall n > N$.

Observe a subsequence (x_{n_k}) . Pick K > 0 such that $n_k > N$ for k > K. Then:

$$|x_{n_k} - x| < \epsilon \quad \forall k > K$$

and (x_{n_k}) converges to x.

2.6 B-W theorem

Theorem 11 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Key: Every bounded sequence must have a monotonic subsequence.

Proof. We construct a subsequence converging to $y = \limsup x_n$. $\forall \epsilon > 0$:

- (a) $\exists N \in \mathbb{N} \text{ s.t. } x_n < y + \epsilon.$
- (b) $\forall N \in \mathbb{N} : \exists n > N \text{ s.t. } x_n > y + \epsilon.$
 - Choose $\epsilon_1 = \frac{1}{2}$. Then $\exists N_1$ s.t. $x_n < y + \epsilon_1 \quad \forall n > N$. Also, there exists n_1 s.t. $x_n > y \epsilon_1$. So, $|x_{n_1} - y| < \epsilon_1$.
 - Choose $\epsilon_2 = \frac{1}{2^2}$. Then $\exists N_2$ s.t. $x_n < y + \epsilon_2 \quad \forall n > N$. Also, there exists $n_2 > \max(N_1, N_2)$ s.t. $x_n > y \epsilon_2$.

So, $|x_{n_2} - y| < \epsilon_2$.

• Iteratively, for $\epsilon_k = \frac{1}{2^k}$: $\exists N_k$ s.t. $x_n < y + \epsilon_k \quad \forall n > N$. Also, $\exists n_k > \max(N_k, N_{k-1})$ s.t. $x_{n_k} > y - \epsilon_k$. Thus, $|x_{n_k} - y| < \epsilon_k$.

Therefore, $x_{n_k} \to y$ and (x_{n_k}) converges.

Series

"Series is infinite sum of real numbers"

Definition 5 (Series). Given a sequence (a_n) . The series $\sum_{n=1}^{\infty} a_n$ converges to a sum $S \in \mathbb{R}$ if the sequence (S_n) of partial sums $S_n = \sum_{k=1}^n a_k$ converges to S as $n \to \infty$. Otherwise, the series diverges.

Key: $\sum a_n$ converges implies $\lim a_n = 0$.

Theorem 12 (Cauchy condition for series). The series $\sum_{n=1}^{\infty} a_n$ converges iff $\forall \epsilon > 0 : \exists N \in \mathbb{N}$ s.t. the tail of the series can be arbitrarily small:

$$\sum_{k=m+1}^{n} |a_k| < \epsilon \quad \forall n > m > N$$

Proof. The series converges iff the sequence of partial sums (S_n) is Cauchy:

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ s.t. } |S_n - S_m| = \sum_{k=m+1}^n |a_k| < \epsilon \quad \forall n > m > N$$

Corollary 4. If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Proof. If the series converges, then it is Cauchy. Choose m = n - 1:

$$|S_n - S_{n-1}| = |a_n| < \epsilon \quad \forall \epsilon > 0, n > n - 1 > N$$

Definition 6 (Absolute convergence). The series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.

Key: Absolute convergence implies convergence.

3.1 Three tests

Theorem 13 (Comparison test). Suppose that $b_n \ge 0$ and $\sum_{n=1}^{\infty} b_n$ converges. If $|a_n| \le b_n$, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Since $\sum b_n$ converges, it satisfies the Cauchy condition. Since:

$$\sum_{k=m+1}^{n} |a_k| \le \sum_{k=m+1}^{n} b_k$$

the series $\sum |a_n|$ also satisfies the Cauchy condition. Therefore $\sum a_n$ converges too.

Theorem 14 (Ratio test). Given a sequence (a_n) .

- It converges absolutely if $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.
- It diverges if $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$.

Theorem 15 (Root test). Given a sequence (a_n) and $r = \limsup_{n \to \infty} |a_n|^{1/n}$. Then $\sum_{n=1}^{\infty} a_n$ converges absolutely if $0 \le r < 1$ and diverges if $1 < r \le \infty$.

Theorem 16 (Ratio implies Root). Given a sequence (a_n) .

- If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\limsup_{n\to\infty} |a_n|^{1/n} < 1$.
- If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then $\limsup_{n\to\infty} |a_n|^{1/n} > 1$.

Limit of a function

Boundedness of a function with a limit. $f: A \to \mathbb{R}$, a is an accumulation point of A, $\lim_{x\to a} f(x) = f(a)$. Then $\exists \delta > 0$ and K > 0 s.t. if $|x - a| < \delta$ then $|g(x)| \le K$.

Definition 7 (Accumulation point). Given a set A. Then c is called an accumulation point of A if for any $\delta > 0$, there exists $a \neq c$ s.t. $|a - c| < \delta$ and $a \in A$.

Definition 8 (Limit of a function). Let $f: A \to \mathbb{R}$, where $A \subset \mathbb{R}$, and suppose that $c \in \mathbb{R}$ is an accumulation point of A. Then:

$$\lim_{x \to c} f(x) = L \Leftrightarrow \forall \epsilon > 0 : \exists \delta > 0 \text{ s.t. if } |x - c| < \delta, x \in A \text{ then } |f(x) - L| < \epsilon$$

$$\tag{4.1}$$

4.0.1 Classes of sets

Definition 9 (Open set). A set $A \subseteq \mathbb{R}$ is open, if for any point $a \in A$, there exists an interval satisfying $a \in (b,c)$ and $(b,c) \subseteq A$.

Proposition 3. A is open set iff for any $a \in A$, there exists $\delta > 0$ s.t. for any point c satisfying $d(a, c) < \delta$, we have $c \in A$.

Definition 10 (Interior point). Given a set $A \subseteq \mathbb{R}$, $a \in A$ is called interior point of A if there exists an interval satisfying $a \in (b, c)$ and $(b, c) \in A$.

Definition 11 (Accumulation point). Given a set $A \subseteq \mathbb{R}$, $a \in A$ is called an accumulation point of A if for any interval satisfying $a \in (b, c)$, we always have $(b, c) \cap A \setminus \{a\} \neq \emptyset$.

Proposition 4. Given a set A

- a is an interior point of A iff there exists $\epsilon > 0$ s.t. for any point c satisfying $d(a,c) < \epsilon$, we have $c \in A$.
- a is an accumulation point of A iff for any $\epsilon > 0$, there exists a point c s.t. $d(a,c) < \epsilon$, $c \in A$, and $c \neq a$.

Continuous function

Definition 12 (Continuous function). $f: A \to \mathbb{R}, A \subseteq R, c \in A$.

f is continuous at c if $\forall \epsilon > 0$: $\exists \delta > 0$ s.t. if $|x - c| < \delta$ then $|f(x) - f(c)| < \epsilon$.

Alternatively, f is continuous at c if $\lim_{x\to c} f(x) = f(c)$.

5.1 Uniform continuity

Definition 13. $f: A \to \mathbb{R}$, f is uniformly continuous function in A if $\forall \epsilon > 0: \exists \delta_{\epsilon} > 0$ s.t. for $x, y \in A$ if $|x - y| < \delta_{\epsilon}$ then $|f(x) - f(y)| < \epsilon$.

Key: Continuous function on a closed, bounded (compact) set is uniform continuous!

Proposition 5. f is not uniform continuous $\Leftrightarrow \exists \epsilon_0 > 0$ and two sequences $(x_n), (y_n)$ s.t.

$$\lim_{n \to \infty} |x_n - y_n| = 0 \ but \ |f(x_n) - f(y_n)| > \epsilon_0 \quad \forall n$$

Definition 14 (Lipschitz function). f is L-Lipschitz if

$$\forall x, y : |f(x) - f(y)| \le L \cdot |x - y|$$

Then f is uniform continuous.

Problem: [Mid-Term-1] Let f(x), g(x) be continuous functions on [0, 1] s.t. f(0) < g(0) and f(1) > g(1). Let

$$E = \{x | x \in [0, 1], f(x) < g(x)\}$$

- (a) Prove sup E < 1. **Key:** By continuity, there exists $\delta > 0$ s.t. $\forall x \in [1 \delta, 1] : f(x) > g(1)$.
- (b) Prove $f(\sup E) = g(\sup E)$.

Theorem 17 (Compact means sequentially compact). A set A is compact (bounded and closed) if and only if A is sequentially compact, meaning that for any sequences (x_n) of A, there exists a subsequence (x_{n_k}) such that x_{n_k} converges to some point $a \in A$.

Proof.

For \Rightarrow : Pick any $(x_n) \subseteq A$. Since A is bounded, (x_n) is a bounded sequence.

By Bolzano-Weierstrass theorem, there must exist a convergent subsequence (x_{n_k}) . Let $\lim_{k\to\infty} x_{n_k} = a$.

We show that $a \in A$. (Proof by contradiction.)

Assume $a \in A^c$. Since A^c is open, $\exists \epsilon^* > 0$ s.t. $(a - \epsilon^*, a + \epsilon^*) \in A^c \Leftrightarrow (a - \epsilon^*, a + \epsilon^*) \cap A = \emptyset$.

Then, $(a - \epsilon^*, a + \epsilon^*) \cap \{x_{n_k}\} = \emptyset$ and $|x_{n_k} - a| > \epsilon^*$. Contradiction.

For \Leftarrow : We are given a sequentially compact set A. (Proof by contradiction.)

Assume A is not compact. Then A is either unbounded or open.

Assume A is unbounded. Then, we can construct a sequence (x_n) in A that diverges $(x_n \to \infty)$ as $n \to \infty$, meaning it has no convergent subsequence. Contradiction.

Now, assume A is open. Then, there exist a sequence (x_n) in A s.t. it converges a point $a \in A^c$.

Thus, every subsequence (x_{n_k}) of this sequence also converges to a.

However, every sequence in A has a convergent subsequence with its limit in A. Contradiction.

Therefore, A must be bounded and closed, meaning it is compact.

Theorem 18. If $K \subset \mathbb{R}$ is compact and $f: K \to \mathbb{R}$ is continuous, then f(K) is compact.

Theorem 19 (Theorem 4.4). If $f: K \to \mathbb{R}$ is continuous and $K \subset \mathbb{R}$ is compact, then f is uniformly continuous on K.

Proof. Suppose for contradiction that f is not uniformly continuous on K. Then, by reverse definition of uniform continuity, there exists $\epsilon_0 > 0$ and sequences (x_n) , (y_n) in K such that

$$\lim_{n \to \infty} |x_n - y_n| = 0 \quad \text{and} \quad |f(x_n) - f(y_n)| \ge \epsilon_0 \text{ for every } n \in \mathbb{N}.$$

Since K is compact, there is a convergent subsequence (x_{n_i}) of (x_n) such that $\lim_{i\to\infty}x_{n_i}=x\in K$. Moreover, since $(x_n-y_n)\to 0$ as $n\to\infty$, it follows that

$$\lim_{i \to \infty} y_{n_i} = \lim_{i \to \infty} \left[x_{n_i} - (x_{n_i} - y_{n_i}) \right] = \lim_{i \to \infty} x_{n_i} - \lim_{i \to \infty} (x_{n_i} - y_{n_i}) = x,$$

so (y_{n_i}) also converges to x. Then, since f is continuous on K,

$$\lim_{i \to \infty} |f(x_{n_i}) - f(y_{n_i})| = \left| \lim_{i \to \infty} f(x_{n_i}) - \lim_{i \to \infty} f(y_{n_i}) \right| = |f(x) - f(x)| = 0,$$

but this contradicts the non-uniform continuity condition $|f(x_{n_i}) - f(y_{n_i})| \ge \epsilon_0$.

Theorem 20 (Weierstrass extreme value theorem). If $f: A \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is compact, then f is bounded on A and f attains its maximum and minimum values on A.

5.2 Intermediate value theorem

Lemma 1 (Intermediate value). Given a continuous function $f : [a, b] \to \mathbb{R}$. If f(a) < 0 and f(b) > 0, or f(a) > 0 and f(b) < 0, then there exists $c \in (a, b)$ s.t. f(c) = 0.

Proof. Assume f(a) < 0 and f(b) > 0.

Let $E = \{x \in [a, b] : f(x) < 0\}.$

Then, $a \in E$ and E is a nonempty set bounded above by b. By completeness axiom, sup E exists.

Let $c = \sup E$. We show that f(c) = 0.

By definition of continuity, $\forall \epsilon > 0 : \exists \delta > 0 \text{ s.t. if } |x - c| < \delta \text{ then:}$

$$|f(x) - f(c)| < \epsilon = \frac{|f(c)|}{2}$$

(Proof by contradiction.)

Assume f(c) < 0: $c \neq b$. For all $x \in [a, b]$ s.t. $|x - c| < \delta$:

$$f(x) = f(c) + f(x) - f(c) < f(c) - \frac{f(c)}{2} = \frac{f(c)}{2} < 0$$

i.e. $x \in E$ for any $x \in [c - \delta, c + \delta] \cap [a, b]$. Since c < b, there is $x^* = c + \delta \in E$ s.t. $x^* > c$. Contradiction.

(Note that we use denseness of \mathbb{Q} here to show $c < c + \delta < b$ exists.)

Assume f(c) > 0: $c \neq a$. For all $x \in [a, b]$ s.t. $|x - c| < \delta$:

$$f(x) = f(c) + f(x) - f(c) < f(c) + \frac{f(c)}{2} > 0$$

i.e. $x \notin E$ for any $x \in [c - \delta, c + \delta] \cap [a, b]$. Then, $\forall x \in [c - \delta, c] : f(x) > 0$ and $x \notin E$.

Thus, $e < c - \delta$ $\forall e \in E$, i.e. $c - \delta$ is a lower upper bound than c. Contradiction.

Differentiable function

6.1 Derivative

Definition 15. $f:(a,b) \to \mathbb{R}, c \in (a,b)$.

We say f is differentiable at point c if $f'(c) = \lim_{h\to 0} \frac{f(c+h)-f(c)}{h} = \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists.

$$f'(c)$$
 exists \Leftrightarrow $f'(c^+) = f'(c^-)$

6.1.1 Properties

Theorem 21 (Continuity). If f is differentiable at c, then f is continuous at c.

Proof.

$$\lim_{x \to c} f(x) - f(c) = \lim_{h \to c} f(c+h) - f(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \cdot h = f'(c) \cdot 0 = 0$$

Theorem 22 (Algebraic property). f, g are differentiable at c.

1. $(f \pm g)'(c) = f'(c) \pm g'(c)$

2. $(f \cdot g)'(c) = f'(c)g(c) + f(c)g'(c)$ $Key: \lim_{h \to 0} \frac{[f(c+h) - f(c)]g(c+h) - f(c)[g(c+h) - g(c)]}{h}$

3. if $g(c) \neq 0$: $(\frac{f}{g})'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g^2(c)}$

Theorem 23 (Chain rule). f, g, g is differentiable at c, f differentiable at g(c). Then, $f \circ g$ is differentiable at c, where $(f(g(c)))' = f'(g(c)) \cdot g'$.

Proof.

$$\lim_{h \to 0} \frac{f(g(c+h)) - f(g(c))}{h} = \lim_{h \to 0} \frac{f(g(c+h)) - f(g(c))}{g(c+h) - g(c)} \frac{g(c+h) - g(c)}{h} = f'(g(c)) \cdot g'(c)$$

6.2 Mean value theorem

Proposition 6. If x_0 is the max or min point on (a,b), then $f'(x_0) = 0$.

Proof.

$$f'(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h > 0} \le 0 = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h < 0} \ge 0 = 0$$

Theorem 24 (Rolle). f is continuous on [a, b], differentiable on (a, b).

Given f(a) = f(b).

$$\exists c \in (a,b) : f'(c) = 0$$

Proof. Since f is a continuous function on a closed interval [a, b], f attains its max/min values on [a, b] (Weierstrass extreme value theorem).

If a, b are max/min, pick c to be min/max. Else, if a, b are not max/min, pick c to be max. \Box

Theorem 25 (Mean value). f is continuous on [a, b], differentiable on (a, b).

$$\exists c \in (a,b) : f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof. Define $g(x) = f(x) - f(a) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a)$, which is also cont. on [a, b], diff. on (a, b):

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

where g(a) = 0 = g(b). By Rolle's theorem, $\exists c \in (a, b) : g'(c) = 0$.

Corollary 5. $f:(a,b) \to \mathbb{R}$ is differentiable on (a,b), f'(x) = 0 for all $x \in (a,b)$. Then f is constant on (a,b).

Key: fix $x_0 \in (a, b)$. By MVT, $\forall x \in (a, b)$ s.t. $x \neq x_0 : \exists c \text{ between } x \text{ and } x_0 \text{ s.t. } f'(c) = \frac{f(x) - f(x_0)}{x - x_0} := 0$.

Corollary 6. $f, g:(a,b) \to \mathbb{R}$ is differentiable on $(a,b), f'(x) = g'(x) \quad \forall x \in (a,b)$.

Then, f(x) = g(x) + C for some constant C.

Key: $(f-g)'(x) = 0 \quad \forall x \in (a,b)$. Then, f-g is a constant function on (a,b).

Corollary 7. $f:(a,b)\to\mathbb{R}$ is differentiable on (a,b). f is increasing on (a,b) iff $f'(x)\geq 0$ $\forall x\in(a,b)$.

Proof. ⇒: given f is increasing, consider any $x \in (a, b)$: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \ge 0$. \Leftarrow : given $f' \ge 0$, consider a < x < y < b. By MVT, $\exists c \in (x, y) : f'(c) = \frac{f(y) - f(x)}{y - x} \ge 0$, i.e. $f(y) \ge f(x)$.

6.3 Inverse function theorem

Proposition 7. $f: A \to \mathbb{R}$ is one-to-one on $A \subset \mathbb{R}$. Assume its inverse $f^{-1}: B \to \mathbb{R}$ exists.

Assume f is differentiable at $c \in A$, f^{-1} is differentiable at $f(c) \in B$.

Then, given $f'(c) \neq 0$, we have:

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)} \tag{6.1}$$

Proof. By definition, $f^{-1}(f(x)) = x$. Take derivative on both sides and apply chain rule.

Theorem 26 (Inverse function). $f: A \to \mathbb{R}$, c is an interior point, f'(x) is continuous on A. If $f'(c) \neq 0$, then one can find $\delta > 0$ s.t.

- (1) f is one-to-one on $(c \delta, c + \delta) \Rightarrow f^{-1}$ exists on $(c \delta, c + \delta)$
- (2) f^{-1} is differentiable on $f((c-\delta,c+\delta)) \Rightarrow (f^{-1})'(f(c)) = \frac{1}{f'(c)}$

Proof. WLOG assume f'(c) > 0. Then, since f' is continuous, f'(x) > 0 for $x \in (c - \delta, c + \delta)$, i.e. f is increasing, one-to-one on $x \in (c - \delta, c + \delta)$.

We prove that f^{-1} is continuous on $a \in f((c - \delta, c + \delta))$ by showing $\lim_{y \to a} f^{-1}(y) = f^{-1}(a)$. $\forall \epsilon > 0 : \exists \delta = \min\{a - f(f^{-1}(a) - \epsilon), f(f^{-1}(a) + \epsilon) - a\}$ s.t. if $|y - a| < \delta$ then $|f^{-1}(y) - f^{-1}(a)| < \epsilon$. Consider:

$$\lim_{y \to a} \frac{f^{-1}(y) - f^{-1}(a)}{y - a} = \lim_{h \to 0} \frac{f^{-1}(a+h) - f^{-1}(a)}{h} = \lim_{h \to 0} \frac{f^{-1}(a+h) - f^{-1}(a)}{f(f^{-1}(a+h)) - f(f^{-1}(a))} = \lim_{x \to c} \frac{x - c}{f(x) - f(c)} = \frac{1}{f'(c)}$$
(6.2)

6.4 L'Hospital's rule

Theorem 27 (Cauchy mean value). f, g are continuous on [a,b], differentiable on (a,b).

$$\exists c \in (a, b) : f'(c) \cdot [g(b) - g(a)] = g'(c) \cdot [f(b) - f(a)]$$

Proof. Define
$$h(x) = [f(x) - f(a)][g(b) - g(a)] - [f(b) - f(a)][g(x) - g(a)]$$
, where $h(a) = 0 = h(b)$.
By Rolle, $\exists c \in (a, b) : h'(x) = 0$.

Theorem 28 (L'Hospital's rule). $f, g: (a,b) \to \mathbb{R}$ are differentiable on (a,b), where $g'(x) \neq 0 \quad \forall x \in (a,b)$ and $\lim_{x\to a^+} f(x) = 0 = \lim_{x\to a^+} g(x)$.

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L \Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

Proof. Extend to $f, g : [a, b) \to \mathbb{R}$ by setting up f(a) = g(a) = 0.

Fix $x \in (a, b)$. By MVT, $\exists c \in (a, x)$ s.t. $g'(c) = \frac{g(x) - g(a)}{x - a}$.

Note that $g(x) = g(x) - g(a) = g'(c) \cdot (x - a) \neq 0$ by given conditions, so $g(x) \neq 0 \quad \forall x \in (a, b)$.

By Cauchy MVT,
$$\exists c \in (a,b)$$
 s.t. $\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x)}{g(x)}$ is well-defined. As $x \to a^+$, $c \to a^+$.

6.5 Taylor's theorem

Definition 16 (Taylor series). $f: A \to \mathbb{R}, c \in (a,b)$. f has n-th order derivative.

Then, the n-th order Taylor series expansion is:

$$P_n(x) = f(c) + f'(c) \cdot (x - c) + \frac{f''(c)}{2!} \cdot (x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!} \cdot (x - c)^n$$

Problem: If f(x) is a polynomial of degree n, then $f(x) = P_n(x)$.

Theorem 29 (Taylor with Largrange Remainder). $f: A \to \mathbb{R}, c \in (a, b)$. f is (n+1)-th order differentiable on (a, b). For every a < x < b, there exists $\xi_{x,c}$ between x and c s.t.

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi_{x,c})}{(n+1)!} (x-c)^{n+1}$$

where $\xi_{x,c}$ is between x and c.

Proof. x, c are fixed. Goal: find $\xi_{x,c}$.

Define
$$g(t) = f(x) - f(t) - f'(t) \cdot (x - t) - \frac{f''(t)}{2!} \cdot (x - t)^2 - \dots - \frac{f^{(n)}(t)}{n!} \cdot (x - t)^n$$
. Then, we have:

$$g(x) = 0$$
$$g(c) = f(x) - P_n(x)$$

$$g'(t) = -f'(t) - f''(t) \cdot (x - t) + f'(t) - \frac{f^{(3)}(t)}{2!} \cdot (x - t)^2 + f''(t) \cdot (x - t) - \dots$$
$$= -\frac{f^{n+1}(t)}{n!} \cdot (x - t)^n$$

Define $h(t) = g(t) - \left(\frac{x-t}{x-c}\right)^{n+1} \cdot g(c)$. Then, we have:

$$h(x) = h(c) = 0$$

By MVT, there exist some $\xi_{x,c}$ s.t. $h'(\xi_{x,c}) = 0$:

$$h'(\xi_{x,c}) = g'(\xi_{x,c}) + (n+1)\frac{(x-\xi_{x,c})^n}{(x-c)^{n+1}} \cdot g(c) = 0$$

Thus, we have:

$$(n+1)\frac{(x-\xi_{x,c})^n}{(x-c)^{n+1}} \cdot g(c) = \frac{f^{(n+1)}(\xi_{x,c})}{n!} \cdot (x-\xi_{x,c})^n$$

Therefore, we have:

$$g(c) = \frac{f^{(n+1)}(\xi_{x,c})}{(n+1)!} \cdot (x-c)^{n+1}$$

Sequences and series of functions

7.1 Uniform convergence

Definition 17 (Pointwise convergence). We say $f_n(x) \to f$ pointwisely if $\lim_{n\to\infty} f_n(x) = f(x) \quad \forall x$

$$\Leftrightarrow \forall x \in A, \forall \epsilon > 0: \exists N_{\epsilon,x} > 0 \text{ s.t. } |f_n(x) - f(x)| < \epsilon \quad \forall n > N_{\epsilon,x}$$

Definition 18 (Uniform convergence). We say $f_n(x) \to f(x)$ uniformly if $\forall \epsilon > 0 \ \exists N_{\epsilon} > 0 \ s.t.$

$$|f_n(x) - f(x)| < \epsilon \quad \forall n > N_{\epsilon}, \forall x$$

Definition 19 (Cauchy condition for uniform convergence). We say $(f_n(x))$ is uniformly Cauchy if $\forall \epsilon > 0$

$$\exists N_{\epsilon} > 0 \text{ s.t. } |f_n(x) - f_m(x)| < \epsilon \quad \forall n, m > N_{\epsilon}, \forall x$$

Theorem 30. Uniform convergence \Leftrightarrow uniform Cauchy.

Proof.
$$\Rightarrow$$
: $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \epsilon$.

 \Leftarrow : Fix x. Note that $(f_n(x))$ is a Cauchy sequence, i.e. $(f_n(x))$ is a convergent sequence.

Let $\lim_{n\to\infty} f_n(x) = f(x)$. Then, we have:

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < \epsilon + 0 \quad \forall n > N, m \to \infty$$

Theorem 31. $\{f_n(x)\}, f_n(x) : A \to \mathbb{R}$ each of f_n is bounded. If $f_n \to f$ uniformly, then f is also a bounded function.

Proof. Key: show |f(x)| is bounded, independent of x.

$$|f(x)| \le |f(x) - f_n(x)| + |f_n(x)| < 1 + M \quad \forall x$$

Choose $\epsilon = 1$. Since $f_n \to f$ uniformly, there exists N > 0 s.t. $|f_n(x) - f(x)| < 1 \quad \forall n > N, \forall x$. Choose n = N + 1. Note that f_{N+1} is bounded, i.e. $|f_{N+1}| < M \quad \forall x$.

Theorem 32. $\{f_n(x)\}, f_n(x) : A \to \mathbb{R} \text{ each of } f_n \text{ is continuous. If } f_n \to f \text{ uniformly, then } f \text{ is also a continuous function.}$

Proof. **Key:** show $\lim_{x\to c} f(x) = f(c)$.

$$|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)| < \frac{2\epsilon}{3} + \frac{\epsilon}{3}$$

Since $f_n \to f$ uniformly, $\forall \epsilon > 0$ there exists N > 0 s.t. $|f_n(x) - f(x)| < \epsilon/3 \quad \forall n > N, \forall x$.

Choose n = N + 1: since f_{N+1} is a continuous function, $\forall \epsilon > 0$: $\exists \delta_{N+1,\epsilon}$ s.t. $|f_{N+1}(x) - f_{N+1}(c)| < \epsilon/3$ if $|x - c| < \delta_{N+1,\epsilon}$.

Theorem 33. $\{f_n(x)\}, f_n(x) : A \to \mathbb{R} \text{ each of } f_n \text{ is differentiable. Assume } f_n \to f \text{ pointwisely, } f'_n \to g$ uniformly. Then, f is also differentiable and f' = g.

Proof. Key: show $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = g(c)$.

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| \le \left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| + \left| \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right| + \left| f'_n(c) - g(c) \right|$$

(1) Note that we can choose arbitrary $m \to \infty$ so that first term goes to 0:

$$\left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| \le \left| \frac{f(x) - f(c)}{x - c} - \frac{f_m(x) - f_m(c)}{x - c} \right| + \left| \frac{f_m(x) - f_m(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right|$$

By MVT for the second term, there is some ξ between x and c s.t. $(f_m - f_n)'(\xi) = \frac{(f_m - f_n)(x) - (f_m - f_n)(c)}{x - c}$. Since $f'_n \to g$ uniformly, $(f'_n(x))$ is uniformly Cauchy: $\forall \epsilon > 0 : \exists N$ s.t.

$$\forall n, m > N_2: |f'_n(x) - f'_m(x)| < \epsilon/3 \quad \forall x$$

- (2) Choose sufficiently large $n > \max(N_1, N_2)$ Since f_n is differentiable, $\exists \delta > 0$ s.t. if $|x c| < \delta$ then $\left| \frac{f_n(x) f_n(c)}{x c} f'_n(c) \right| < \epsilon/3$.
- (3) $f'_n \to g$ uniformly, then $\forall \epsilon > 0 : \exists N_2 > 0$ s.t. $|f'_n(x) g(x)| < \epsilon/3 \quad \forall n > N_2, \forall x.$

7.2 Series of functions

Definition 20. $\{f_n(x)\}, f_n(x): A \to \mathbb{R}.$

We say that $\sum_{n=1}^{\infty} f_n(x)$ converges pointwisely if $\lim_{n\to\infty} S_n(x) = \lim_{n\to\infty} \sum_{k=1}^n f_k(x)$ converges pointwisely.

Theorem 34. $\{f_n(x)\}, f_n(x): A \to \mathbb{R}.$

$$\sum_{n=1}^{\infty} f_n(x) \ converges \ uniformly \quad \Leftrightarrow \quad \forall \epsilon > 0: \ \exists N > 0 \ s.t. \ \left| \sum_{k=m+1}^n f_k(x) \right| < \epsilon \quad \forall n > m > N, \forall x$$

Proof. \Rightarrow : Note that $(S_n(x))$ is a uniform Cauchy sequence. Then, (S_n) converges.

Fix x. Apply Cauchy condition for series: $S_n(x) - S_m(x)$.

Theorem 35 (Comparison test). $\{f_n(x)\}, f_n(x): A \to \mathbb{R}$.

If we can find $\{M_n\}$ s.t. $M_n \ge 0$, $\sum_{n=1}^{\infty} M_n < \infty$ and $|f_n(x)| < M_n \quad \forall n, \forall x$, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.

Proof. Because $\sum M_n < \infty$ converges, $\forall \epsilon > 0 : \exists N > 0$ s.t. we have

$$\left| \sum_{k=m+1}^{n} f_k(x) \right| \le \sum_{k=m+1}^{n} |f_k(x)| < \sum_{k=m+1}^{n} M_k < \epsilon \quad \forall n > m > N$$

7.3 Power series

$$\sum_{n=1}^{\infty} a_n (x-c)^n$$

where $c \in \mathbb{R}$, $\{a_n\} \subseteq \mathbb{R}$.

There always exists radius of convergence R, radius of uniform convergence $0 \le \rho < R$.

Proposition 8. If $\sum_{n=1}^{\infty} a_n x_0^n$ converges for some $x_n \in \mathbb{R}$, where $|x_0| > 0$, then $\sum_{n=1}^{\infty} a_n x^n$ converges for any $|x| < |x_0|$.

Proof. Since $\sum_{n=1}^{\infty} a_n x_0^n$ converges, $\lim_{n\to\infty} a_n x_0^n = 0$, i.e. a sequence $(a_n x_0^n)$ is bounded.

$$\exists M > 0 \text{ s.t. } |a_n x_0^n| < M \quad \forall n.$$
$$|a_n x^n| = |a_n x_0^n \cdot \left(\frac{x}{x_0}\right)^n| < M \cdot \left|\frac{x}{x_0}\right|^n \to 0 \text{ as } n \to \infty.$$

Theorem 36. Define $f_n(x) = a_n(x-c)^n$. Then, we can find $R \ge 0$ s.t.

- (1) if |x| < R, $\sum_{n=1}^{\infty} |f_n(x)|$ converges, if |x| > R, $\sum_{n=1}^{\infty} f_n(x)$ diverges.
- (2) if $|x| \leq \rho$, $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.
- Proof. (1) Define $R = \sup\{|x| : \sum_{n=1}^{\infty} a_n x^n\}$.

Let $0 < R < \infty$. By definition of sup, $\exists x_0$ s.t. $|x| < |x_0| < R$ and $\sum_{n=1}^{\infty} a_n x_0^n$ converges. When |x| > R, because R is the upper bound, we must have $|x| \notin \{|x| : \sum_{n=1}^{\infty} a_n x^n \text{ converges}\}$.

Let R = 0. $\sum_{n=1}^{\infty} a_n x_0^n$ diverge always.

Let $R = \infty$. $\exists x_0$ s.t. $|x_0| > |x|$ always, i.e. always converges.

(2) Given $\rho < R$, since R is sup, $\exists x_0$ s.t. $\rho < |x_0| < R$ and $\sum a_n x_0^n$ converges. Then, $\lim_{n \to \infty} a_n x_0^n = 0$ and $\exists M > 0$ s.t. $|a_n x_0^n| < M \quad \forall n$.

$$|a_nx^n|=|a_nx_0^n\cdot(\tfrac{x}{x_0})^n|\leq M\cdot\left|\tfrac{x}{x_0}\right|^n=M\cdot\left|\tfrac{\rho}{x_0}\right|^n\to 0 \text{ as } n\to\infty, \forall |x|<\rho \text{ , i.e. independent of } x.$$

Theorem 37. (1) $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ if limit exists.

- (2) $R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$.
- *Proof.* (1) According to ratio test, converges if $\lim \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| < 1$.
 - (2) According to root test, converges if $\limsup \sqrt[n]{a_n|x|^n} = \limsup \sqrt[n]{a_n} \cdot |x| < 1$

Proposition 9. $\sum_{n=1}^{\infty} a_n x^n$ has the same convergent radius R as (its derivative) $a_1 + \sum_{n=1}^{\infty} (n+1)a_{n+1}x^n$.

Proof. Note that limsup always exists.

$$R = \frac{1}{\limsup \sqrt[n]{a_n}} = \frac{1}{\limsup \sqrt[n]{na_n}} = \frac{1}{\limsup \sqrt[n+1]{(n+1)a_n}}$$

Theorem 38. f(x) is infinite-differentiable on (-R, R).

Proposition 10. $R, S > 0, functions f(x) = \sum_{n=1}^{\infty} a_n x^n \text{ in } |x| < R,$

Integrable functions

8.1 Supremum and infimum of functions

Proposition 11. If $f, g : A \to \mathbb{R}$ are bounded functions, then:

$$\left| \sup_{A} f - \sup_{A} g \right| \le \sup_{A} |f - g|, \quad \left| \inf_{A} f - \inf_{A} g \right| \le \sup_{A} |f - g| \tag{8.1}$$

Proof.
$$\sup f \leq \sup(f-g) + \sup g \leq \sup|f-g| + \sup g$$
. Use $\sup(-f) = -\inf f$.

8.2 Riemann integrable

Definition 21 (Upper and lower Riemann sum).

$$U(f;P) = \sum_{k=1}^{n} \sup_{[x_{k-1},x_k]} f \cdot (x_k - x_{k-1}) \quad and \quad U(f) = \inf_{P} U(f;P)$$

$$L(f;P) = \sum_{k=1}^{n} \inf_{[x_{k-1},x_k]} f \cdot (x_k - x_{k-1}) \quad and \quad L(f) = \sup_{P} L(f;P)$$
(8.2)

Definition 22. A function $f:[a,b] \to \mathbb{R}$ is Riemann integrable on [a,b] if it is bounded and U(f) = L(f).

Definition 23. A partition $Q = \{J_1, \ldots, J_m\}$ is a refinement of a partition $P = \{I_1, \ldots, I_n\}$ if every interval I_k in P is an almost disjoint union of one or more intervals J_l in Q $(m \ge n)$.

Theorem 39. Let $f:[a,b] \to \mathbb{R}$ be bounded, P be a partition on [a,b], Q be a refinement of P. Then

$$U(f;Q) \le U(f;P), \quad L(f;P) \le L(f;Q) \tag{8.3}$$

Proposition 12. If $f:[a,b] \to \mathbb{R}$ is bounded and P,Q are partitions of [a,b], then $L(f;P) \leq U(f,Q)$.

Proof. Let R be a common refinement of P and Q. Then: $L(f; P) \leq L(f, R) \leq U(f, R) \leq U(f, Q)$.

Proposition 13. If $f:[a,b] \to \mathbb{R}$ is bounded, then $L(f) \leq U(f)$.

Proof. Consider $A = \{L(f; P) : P \in \Pi\}$, $B = \{U(f; P) : P \in \Pi\}$. From previous proposition, $L \leq U \quad \forall L \in A, U \in B$. Thus, $L(f) = \sup A \leq \inf B = U(f)$.

8.3 Cauchy condition for integrability

Theorem 40. A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable iff for every $\epsilon > 0$ there exists a parition P of [a,b] (may depend on ϵ) s.t.

$$U(f;P) - L(f;P) < \epsilon \tag{8.4}$$

Proof. \Leftarrow : Given that Cauchy condition holds for $\epsilon > 0$ and a partition P.

Note that $U(f) \leq U(f; P), L(f) \geq L(f; P)$. Then, we have:

$$0 \le U(f) - L(f) \le U(f; P) - L(f; P) < \epsilon$$

so U(f) = L(f), and f is Riemann integrable by definition.

 \Rightarrow : Given that f is integrable. Let $\epsilon > 0$. Then, there exist partitions Q, R s.t.

$$U(f;Q) < U(f) + \frac{\epsilon}{2}, \quad L(f;R) > L(f) - \frac{\epsilon}{2}$$

Let P be a common refinement of Q and R. Then:

$$U(f;P) - L(f;P) \le U(f;Q) - L(f;R) \le U(f) - L(f) + \epsilon$$

where U(f) = L(f) by definition.

8.4 Continuous, monotonic functions

Theorem 41. A continuous function $f:[a,b] \to \mathbb{R}$ on a compact interval is Riemann integrable.

Proof. A contituous function on a compact set is bounded and uniformly continuous.

Thus, $\forall > 0: \exists \delta > 0 \text{ s.t. } |f(x) - f(y)| < \frac{\epsilon}{b-a} \quad \forall x,y \in [a,b] \text{ satisfying } |x-y| < \delta.$

Choose a partition $P = \{I_1, \dots, I_n\}$ s.t. $|I_i| < \delta \quad \forall i$.

A function attains its max value M_k at x_k and min value m_k at y_k in compact interval I_k . Since $|x_k - y_k| < \delta$, we have $M_k - m_k < \frac{\epsilon}{b-a}$:

$$U(f;P) - L(f;P) = \sum_{k=1}^{n} M_k |I_k| - \sum_{k=1}^{n} m_k |I_k| = \sum_{k=1}^{n} (M_k - m_k) |I_k| < \frac{\epsilon}{b-a} \sum_{k=1}^{n} |I_k| < \epsilon$$

Theorem 42. A monotonic function $f:[a,b] \to \mathbb{R}$ on a compact interval is Riemann integrable.

Proof. Let f be monotonic increasing: $f(x) \leq f(y) \quad \forall x \leq y$.

Choose a partition $P_n = \{I_1, \ldots, I_n\}$ of n subintervals $I_k = [x_{k_1}, x_k]$ of [a, b], each of length $\frac{b-a}{n}$ with endpoints

$$x_k = a + (b-a)\frac{k}{n}$$
 $k = 0, 1, 2, \dots, n$

Since f is increasing, $M_k = \sup_{I_k} f = f(x_k)$, $m_k = \inf_{I_k} f = f(x_{k-1})$.

$$U(f; P_n) - L(U; P_n) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} [f(x_k) - f(x_{k-1})] = \frac{b-a}{n} [f(b) - f(a)]$$

which goes to 0 as $n \to \infty$.

8.5 Properties

Theorem 43. Given $f, g: [a, b] \to \mathbb{R}$ are Riemann integrable.

- (1) fg is Riemann integrable
- (2) $\frac{f}{g}$ is Riemann integrable if $\frac{1}{g}$ is bounded

Proof. (1) Since f, g are Riemann integrable, $\exists M > 0$ s.t. |f|, $|g| \leq M$.

Pick $\forall x, y \in A = [t_{k-1}, t_k]$:

$$f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y) \le M(|f(x) - f(y)| + |g(x) - g(y)|)$$

$$\le M((\sup f - \inf f) + (\sup g - \inf g))$$

Note that $|f(x) - f(y)| \le \sup f - \inf f \quad \forall x, y$.

Then, we have:

$$U(fg,P) - L(fg,P) \le M \cdot \left[U(f,P) - L(f,P) + U(g,P) - L(g,P) \right] \quad \forall P \in \mathcal{P}(G,P)$$

Since f, g are Riemann integrable, $\forall \epsilon > 0$: $\exists R$ s.t.

$$U(f,R) - L(f,R) \le \frac{\epsilon}{2M}$$
$$U(g,R) - L(g,R) \le \frac{\epsilon}{2M}$$

8.5.1 Linearity, monotonicity, additivity

Theorem 44 (Linearity). $f:[a,b] \to \mathbb{R}$ is integrable and $c \in \mathbb{R}$, then cf is integrable and

$$\int_{a}^{b} cf = c \int_{a}^{b} f$$

Proof. Observe $c \ge 0$. Observe -f, where $\sup(-f) = -\inf(f)$. Then, observe c < 0 where c = -|c|.

Theorem 45 (Monotonicity). $f, g: [a,b] \to \mathbb{R}$ are Riemann integrable and $f \leq g$ $x \in [a,b]$. Then

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Proof. Define $h(x) = g(x) - f(x) \ge 0$, which is also Riemann integrable by linearity.

Then, we have $\inf_{[t_{k-1},t_k]} h \ge 0$. So, $L(f,P) \ge 0 \quad \forall P$.

By definition,
$$\int_a^b h = \sup_P L(h, P) \ge 0$$
, so $\int_a^b g - \int_a^b f = \int_a^b h \ge 0$.

Theorem 46 (Monotonicity). If $f:[a,b] \to \mathbb{R}$ is Riemann integrable, then |f| is also Riemann integrable and

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Proof.

$$|f(x)| - |f(y)| \le \sup_{A} f - \inf_{A} f \quad \forall x, y \in A$$
$$U(|f|, P) - L(|f|, P) \le U(f, P) - L(f, P) \quad \forall P$$

By definition, we have:

$$-\int_{a}^{b} |f| dx \le \int_{a}^{b} f dx \le \int_{a}^{b} |f| dx$$

i.e. $-b \le a \le b \Rightarrow |a| \le b$.

Theorem 47 (Additivity). Choose $c \in (a, b)$.

f is Riemann integrable on $[a,b] \Leftrightarrow f$ is Riemann integrable on [a,c] and [c,b], where

$$\int_{a}^{c} f dx + \int_{c}^{b} f dx = \int_{a}^{b} f dx$$

Proof. \Rightarrow : Given f is integrable on [a,b]. Thus, $\forall \epsilon > 0 : \exists P \text{ s.t. } U(f;P) - L(f;P) < \epsilon$. Let $P' = P \cup \{c\}$, and split $P' = Q \cup R$ into partitions Q of [a,c] and R of [c,b].

$$U(f; P') = U(f; Q) + U(f; R)$$
 and $L(f; P') = L(f; Q) + L(f; R)$
 $U(f; Q) - L(f; Q) = U(f; P') - L(f; P') - [U(f; R) - L(f; R)] < U(f; P) - L(f; P) < \epsilon$

 $\Leftarrow : \mbox{ Given } f \mbox{ is integrable on } [a,c] \mbox{ and } [c,b]. \mbox{ Let } P = Q \cup R.$

$$\begin{split} &U(f;Q)-L(f;Q)<\frac{\epsilon}{2} \text{ and } U(f;R)-L(f;R)<\frac{\epsilon}{2}\\ &U(f;P)-L(f;P)=\left[U(f;Q)+U(f;R)\right]-\left[L(f;Q)+L(f;R)\right]<\epsilon \end{split}$$

8.6 Fundamental theorem of calculus

Theorem 48 (Fundamental theorem of calculus).

Version 1. $F(x): [a,b] \to \mathbb{R}$ differentiable, f(x) = F'(x) integrable, then $\int_a^b f(x) dx = F(b) - F(a)$. Version 2. $f(x): [a,b] \to \mathbb{R}$ integrable, define $F(x) = \int_a^x f(t) dt$. Then:

- 1. F(x) is a continuous function on [a, b]
- 2. if f(x) is continuous at $c \in [a, b]$, then F'(c) = f(c)

Proof. (Version 1.) Let $P = \{a = x_0, x_1, \dots, x_n = b\}$. Then, $F(b) - F(a) = \sum_{k=1}^n [F(x_k) - F(x_{k-1})]$. By MVT, $\exists c \in (x_{k-1}, x_k)$ s.t. $F(x_k) - F(x_{k-1}) = f(c)(x_k - x_{k-1})$:

$$L(f; P) = m_k(x_k - x_{k-1}) \le F(x_k) - F(x_{k-1}) \le M_k(x_k - x_{k-1}) = U(f; P)$$

where f is Riemann integrable, i.e. U(f) = L(f), and thus $F(x_k) - F(x_{k-1}) = \int_{x_{k-1}}^{x_k} f(x) dx$. \square Proof. (Version 2.)

(1) **Key:** derive Lipschitz! Since f is Riemann integrable, it is bounded. Let $|f(t)| \leq M \quad \forall t$.

$$|F(y) - F(x)| = \left| \int_{x}^{y} f(t)dt \right| \le \int_{x}^{y} |f(t)|dt \le \int_{y}^{x} Mdt = M(x - y) \quad \forall x < y$$
 (8.5)

so F is continuous.

(2) Given $c \in [a, b]$. Define

$$\frac{F(c+h) - F(c)}{h} = \frac{1}{h} \int_{c}^{c+h} f(t)dt$$

Then, we have:

$$\frac{F(c+h) - F(c)}{h} - f(c) = \frac{1}{h} \int_{c}^{c+h} f(t)dt - \frac{1}{h} \int_{c}^{c+h} f(c)dt = \frac{1}{h} \int_{c}^{c+h} [f(t) - f(c)]dt$$
 (8.6)

Since f is continuous at c, $\forall \epsilon > 0 : \exists \delta > 0 \text{ s.t. } |f(t) - f(c)| < \epsilon \quad \forall |t - c| < \delta.$

Choose $h < \delta$:

$$\left| \frac{1}{h} \int_{c}^{c+h} [f(t) - f(c)] dt \right| \le \frac{1}{h} \int_{c}^{c+h} |f(t) - f(c)| dt \le \frac{1}{h} \int_{c}^{c+h} \epsilon dt = \frac{1}{h} \epsilon h = \epsilon$$
 (8.7)

and $F'(c) = \lim_{h\to 0} \frac{1}{h} \int_{c}^{c+h} f(t)dt = f(c)$.

33

Theorem 49 (Integration by parts). $f, g: [a,b] \to \mathbb{R}$ differentiable, f', g' integrable. Then

$$\int_{a}^{b} fg'dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'gdx$$

Proof.

$$\int_{a}^{b} (fg' + f'g)dx = \int_{a}^{b} (fg)'dx = f(b)g(b) - f(a)g(a)$$
(8.8)

Theorem 50 (Change of variable). f continuous, g differentiable. Then

$$\int_{g(a)}^{g(b)} f(x)dx = \int_{a}^{b} f(g(x)) \cdot g'(x)dx = \int_{a}^{b} F'(g(x))dx = F(g(b)) - F(g(a))$$

8.7 Last class: integration of sequences of functions

Theorem 51. $f_n:[a,b]\to\mathbb{R}$ integrable for all $n, f_n\to f$ uniformly on [a,b] as $n\to\infty$. Then $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b] and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

Proof. Since $f_n \to f$ uniformly, $\exists N > 0$ s.t.

$$f_n(x) - \frac{\epsilon}{b-a} < f(x) < f_n(x) + \frac{\epsilon}{b-a} \quad \forall x \in [a,b]$$

Note that $L(f_n - \frac{\epsilon}{b-a}) \le L(f)$, $U(f_n + \frac{\epsilon}{b-a}) \ge U(f)$.

Since f_n is integrable and upper Riemann sums are greater than lower Riemann sums:

$$\int_{a}^{b} f_{n} - \epsilon \le L(f) \le U(f) \le \int_{a}^{b} f_{n} + \epsilon \quad \forall n > N$$

so $0 \le U(f) - L(f) \le 2\epsilon$, thus U(f) = L(f) and f is Riemann integrable by definition. Note that $\left| \int_a^b f_n - \int_a^b f \right| \le \epsilon \quad \forall n > N$, so $\int_a^b f_n \to \int_a^b f$ as $n \to \infty$.

Final

Problem: Assume that f(x) is the first-order differentiable (f'(x) exists) in [-1,1] and $\sum_{n=1}^{\infty} f(\frac{1}{n})$ absolutely converges. Prove that f'(0) = 0.

Hint: notice that $\sum \frac{c}{n}$ is convergent and use proof by contradiction.

Solution:

Proof. Since $\sum f(\frac{1}{n})$ converges, $\lim_{n\to\infty} f(\frac{1}{n}) = 0 = f(0)$, where f is continuous at 0.

(Proof by contradiction.) Assume $f'(0) = c \neq 0$.

Then, we have:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = c$$

$$\forall \epsilon > 0 : \exists \delta > 0 \text{ s.t. } \left| \frac{f(x)}{x} - c \right| < \epsilon = \frac{c}{2} \quad \forall |x - 0| < \delta$$

$$\left| \frac{f(x)}{x} \right| > \frac{|c|}{2} \quad \forall |x| < \delta$$

Replace $x = \frac{1}{n}$, i.e. $|x| < \delta$ is the same as $n > \frac{1}{\delta}$. Then, we have:

$$\left| f\left(\frac{1}{n}\right) \right| > \frac{|c|}{2n} \quad \forall n > \frac{1}{\delta}$$

Note that $\frac{|c|}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

By comparison test, $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ diverges, too. Contradiction.

Problem: Let f be a bounded function on [0,1]. Given any partition $P = \{0 = p_0 < p_1 < \cdots < p_m = 1\}$ on [0,1], we define

$$\operatorname{len}(P) = \max_{o \le k \le m-1} p_{k+1} - p_k$$

We also define

$$U_n = \inf_{P, \ \text{len}(P) \ge \frac{1}{n}} U(f; P), \quad L_n = \sup_{P, \ \text{len}(P) \ge \frac{1}{n}} L(f; P)$$

Prove:

- (a) $\lim_{n\to\infty} U_n$ and $\lim_{n\to\infty} L_n$ exist.
- (b) f is Riemann integrable on [0, 1] iff $\lim_{n\to\infty} U_n = \lim_{n\to\infty} L_n$.

Solution:

(a) *Proof.* Note that U_n is defined over smaller and smaller partitions, thus decreasing. Since U_n is bounded below by $\inf_{[0,1]} f \cdot (1-0)$, $\lim_{n\to\infty} U_n$ exists.

Similarly, L_n is increasing and bounded above by $\sup_{[0,1]} f$, and thus $\lim_{n\to\infty} L_n$ exists.

(b) $Proof. \Rightarrow$: Given f is integrable. Then, Cauchy condition for integrability holds:

$$\forall \epsilon > 0 : \exists P \text{ s.t. } U(f; P) - L(f; P) < \epsilon$$

We increase max subinterval of P further s.t. $len(P) \ge \frac{1}{n}$: $U_n \le U(f; P), L_n \ge L(f; P)$.

$$U_n - L_n \le U(f; P) - L(f; P) < \epsilon$$

and choosing $n \to \infty$ yields $\lim_{n \to \infty} U_n = \lim_{n \to \infty} L_n$.

 \Leftarrow : Given $\lim_{n\to\infty} U_n = \lim_{n\to\infty} L_n$. Then, $\lim_{n\to\infty} U_n - L_n = 0$.

By def of limit, $\forall \epsilon > 0 : \exists N > 0 \text{ s.t. } |U_n - L_n - 0| < \epsilon \quad \forall n > N.$

By def of limsup/liminf, $\exists P, Q \text{ s.t. } \operatorname{len}(P), \operatorname{len}(Q) \geq \frac{1}{n} : U(f; P) \leq U_n + \frac{\epsilon}{2}, L(f; Q) \geq L_n - \frac{\epsilon}{2}.$

Let $R = P \cup Q$ be a common refinement:

$$U(f;R) - L(f;R) \le U(f;P) - L(f;Q) \le \frac{U_n - L_n + \epsilon}{2}$$

Problem: Let f(x) be first-order differentiable on [a, b], $f(a) \neq 0$, $f(b) \neq 0$. Define a sequence $\{x_n\}$ s.t. $f(x_n) = 0$ for all n. Let $\liminf_{n \to \infty} x_n = c$.

- (a) Prove $c \in (a, b)$. Note: liminf is not necessarily part of the sequence!
- (b) Prove f(c) = f'(c) = 0.

Solution:

- (a) Proof. Since f is continuous at a, $f(x) \neq 0 \quad \forall x \in [a \delta, a + \delta]$. Similarly for b. So, $\{x_n\} \in [a + \delta, b - \delta_1] \subset (a, b)$ and liminf of $\{x_n\}$ must be inside (a, b).
- (b) *Proof.* Let $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ s.t. $\lim_{k\to\infty} x_{n_k} = c$. Then

$$f(c) = f(\lim_{k \to \infty} x_{n_k}) = 0$$

and $f'(c) = \lim_{k \to \infty} \frac{f(x_{n_k}) - f(c)}{x - c} = 0$ (since it is well-defined).

Problem: Let $f:(a,b)\to\mathbb{R}$ be differentiable, $|f'(x)|\leq M$ for some M>0. Prove: $\lim_{x\to b^-}f(x)$ exists.

Solution:

Proof. Consider a < x < y < b: f is continuous on [x, y] differentiable on (x, y).

By MVT, $\exists c \in (x, y)$ s.t. $|f'(c)| = \left| \frac{f(y) - f(x)}{y - x} \right| \le M$. Then, $|f(y) - f(x)| \le M|y - x| \quad \forall x, y \in (a, b)$. For any $\epsilon > 0$, choose $\delta = \frac{M}{\epsilon}$.

Then, f is uniformly continuous: $|f(y) - f(x)| \le M|y - x| = \epsilon \quad \forall |x - y| < \delta$.

Choose a sequence $(x_n) \subset (a,b)$ s.t. $x_n \to b^-$ (consider $x_n = b - 1/n$).

Then, since (x_n) converges, (x_n) is a Cauchy sequence: $\forall \epsilon > 0 : \exists N > 0 \text{ s.t. } |x_n - x_m| < \epsilon \quad \forall n, m > N.$

Thus, the Cauchy condition for uniform convergence of f holds:

$$|f(x_n) - f(x_m)| \le \epsilon \quad \forall n, m > N$$

since $|x_n - x_m| < \delta$. Thus, the sequence $(f(x_n))$ converges and $\lim_{x \to b^-} f(x_n)$ exists.

Note that since f is uniformly continuous, for different sequences $x_n \to b^-$ and $y_n \to b^-$, we have $\forall \epsilon > 0 : \exists \delta > 0 \text{ s.t. } |f(x_n) - f(y_n)| < \epsilon \quad \forall |x_n - y_n| < \delta$, and so

$$\lim_{x_n \to b^-} f(x_n) = \lim_{y_n \to b^-} f(y_n)$$