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Chapter 1

Numbers

1.1 Real numbers

Theorem 1 (Completeness axiom). Every nonempty set S of real numbers that is bounded from above has

a supremum, i.e. supS exists.

Corollary 1 (Archimedean Property). If a > 0 and b > 0, then for some positive integer n, we have

na > b.

Proof. Define S = {na|n ∈ N}.
(Proof by contradiction.) Assume this corrollary is wrong, i.e. ∀s0 ∈ S : s0 ≤ b. Thus, b is an upper

bound of S and supS ̸= ∞.

Let s∗ = supS ̸= ∞. Then, s∗ − a < s∗ since a > 0.

Also, s∗ − a is not the upper bound of S. Thus, there exists n ∈ N s.t. na > s∗ − a.

Then, we have:

(n+ 1)a = na+ a > s∗ − a+ a = s∗

Contradiction. s∗ is not upper bound of S anymore.

Corollary 2 (Denseness of Q). If a, b ∈ Q and a < b, then there is a rational r ∈ Q such that a < r < b.

Proof. It suffices to show there exists m,n ∈ Z such that a < m
n
< b.

Since b− a > 0, using Archimedean property, there exists n ∈ N such that n(b− a) > 1.

Then, nb > na+ 1. Thus, there exists m ∈ Z s.t. nb > na

3
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1.2 Proof by induction

Theorem 2. Suppose that A ⊂ N is a set of natural numbers s.t.

(a) 1 ∈ A

(b) n ∈ A implies (n+ 1) ∈ A.

Then A = N.

1.3 sup, inf

Definition 1. Suppose A ⊂ R is a set of real numbers.

• supA is the lowest upper bound.

• inf A is the greatest lower bound.

Key: Given ϵ > 0, there exists a ∈ A s.t. a ≤ supA < a+ ϵ.
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Chapter 2

Sequences

2.1 Defintion of limits

Definition 2 (Limit of a sequence). Given a sequence (xn).

lim
n→∞

xn = x ⇔ ∀ϵ > 0 : ∃N ∈ N s.t. |xn − x| < ϵ ∀n > N

Definition 3. Given a sequence (xn).

• limn→∞ xn = ∞ ⇔ ∀M ∈ R : ∃N ∈ N s.t. xn > M ∀n > N

• limn→∞ xn = −∞ ⇔ ∀M ∈ R : ∃N ∈ N s.t. xn < M ∀n > N

2.1.1 Properties of limits

Key: limn→∞ xn = x ⇔ limn→∞ |xn − x| = 0.

Proposition 1 (Uniqueness). Limit is unique.

Proof. (Proof by contradiction.) Assume limn→∞ xn = x and limn→∞ xn = x′ s.t. x ̸= x′.

By definition, ∀ϵ > 0 : ∃N,N ′ > 0 s.t. |xn − x| < ϵ/2 ∀n > N and |xn − x′| < ϵ/2 ∀n > N ′.

Then, we have:

|x− x′| = |x− xn + xn − x′| ≤ |x− xn|+ |xn − x′| < ϵ/2 + ϵ/2 = ϵ

By deifnition, limn→∞ |x− x′| = 0. So, x = x′.

Theorem 3 (Boundness). If limit exists, then sequence (xn) is bounded.

Proof. Let limn→∞ xn = x. Then, ∃N > 0 s.t. |xn − x| < 1 ∀n > N .

Thus, ∀n > N : |xn| = |xn − x+ x| ≤ |xn − x|+ |x| < |x|+ 1, which is a constant.

5
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Let M = max(|x1|, . . . , |xN |, |x|+ 1).

Then, we have |xn| ≤ M ∀n ∈ N, and the sequence (xn) is bounded.

Theorem 4 (Exchange the order of limits and algebraic operations). Given (xn), (yn) are convergent

sequences (limn→∞ xn = x, limn→∞ yn = y), c ∈ R.
Then, sequences (cxn), (xn + yn), (xn · yn) are convergent, and:

• limn→∞ cxn = cx Choose |xn − x| < ϵ/|c|.

• limn→∞(xn + yn) = x+ y Choose |xn − x| < ϵ/2 ∀n > N1, |yn − y| < ϵ/2 ∀n > N2.

• limn→∞(xy · yn) = xy ∃M > 0 s.t. |xn|, |yn| ≤ M ∀n. |xnyn − xy| ≤ |xn||yn − y|+ |y||xn − x|.

Theorem 5 (Preserve monotonicity). If (xn), (yn) are convergent and xn ≤ yn ∀n ∈ N, then:

lim
n→∞

xn ≤ lim
n→∞

yn

Proof. By defintion, ∀ϵ > 0 : ∃N1, N2 > 0 s.t. |xn − x| < ϵ/2 ∀n > N1 and |yn − y| < ϵ/2 ∀n > N2.

Thus, y − ϵ/2 < yn < y + ϵ/2.

Choose N = max(N1, N2). Then, we have ∀n > N :

x = xn + x− xn < yn +
ϵ

2
< y +

ϵ

2
+

ϵ

2
= y + ϵ ∀ϵ > 0

i.e. x ≤ y.

Theorem 6 (Squeeze theorem*). Let (xn), (yn) be the convergent sequences with the same limit L. If a

sequence (zn) is such that

xn ≤ zn ≤ yn ∀n ∈ N

then (zn) also converges to L.
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2.2 limsup, liminf

Theorem 7. Given a sequence (xn). Then:

y = lim sup
n→∞

xn

iff y ∈ [−∞,∞] satisfies one of the following:

(1) y ∈ (−∞,∞): ∀ϵ > 0

(a) ∃N ∈ N s.t. xn < y + ϵ ∀n > N

(b) ∀N ∈ N : ∃n > N s.t. xn > y − ϵ

(2) y = ∞: ∀M ∈ R : ∃n ∈ N s.t. xn > M , i.e. (xn) is not bounded from above

(3) y = −∞: ∀m ∈ R : ∃N ∈ N s.t. xn < m ∀n > N , i.e. xn → −∞ as n → ∞

Similarly:

z = lim inf
n→∞

xn

iff z ∈ [−∞,∞] satisfies one of the following:

(1) z ∈ (−∞,∞): ∀ϵ > 0

(a) ∃N ∈ N : xn > z − ϵ ∀n > N

(b) ∀N ∈ N : ∃n > N s.t. xn < z + ϵ

(2) x = ∞: ∀M ∈ R : ∃N ∈ N s.t. xn > M ∀n > N , i.e. xn → ∞ as n → ∞

(3) x = −∞: ∀m ∈ R : ∃n ∈ N s.t. xn < m, i.e. (xn) is not bounded from below

Theorem 8.

lim
n→∞

xn = x ⇔ lim supxn = lim inf xn = x

Proof. For ⇐: Given lim supxn = lim inf xn = x.

Note that limn→∞ sup{xk : k ≥ n} = x decreases and limn→∞ inf{xk : k ≥ n} = x increases as n → ∞.

Let zn = inf{xk : k ≥ n}, which is monotone increasing and bounded above. Let yn = sup{xk : k ≥ n}.
Then, we have: x− ϵ < zn ≤ xn ≤ yn < x+ ϵ ∀ϵ > 0.

For ⇒: Given limxn = x.

By definition, ∀ϵ > 0 : ∃N > 0 s.t. |xn − x| < ϵ, i.e. x− ϵ < xn < x+ ϵ ∀n > N .

Then, we have: x− ϵ < zn ≤ xn ≤ yn < x+ ϵ. Thus, lim zn = lim yn = x = lim sup xn = lim inf xn.
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Corollary 3.

lim
n→∞

xn = x ⇔ lim sup |xn − x| = 0

Key: lim inf xn ≤ lim supxn.

Proof. Note that limn→∞ xn = x ⇔ limn→∞ |xn − x| = 0 = lim sup |xn − x|.
Conversely, if lim sup |xn − x| = 0, we have:

0 ≤ lim inf |xn − x| ≤ lim sup |xn − x| = 0

i.e. lim inf |xn − x| = lim sup |xn − x| = 0 and thus lim xn = x.

Problem: Prove lim inf xn = − lim sup(−xn) for any sequence (xn).

Proof. Let xN = inf{xn : n > N} = − sup{−xn : n > N}. Then, we have:

lim
N→∞

xN = lim inf xn = − lim sup(−xn)

2.3 Monotone sequences*

Theorem 9. A monotone sequence converges iff it is bounded.

• If (xn) is monotone increasing, bounded, then limn→∞ xn = sup{xn : n ∈ N}.

• If (xn) is monotone decreasing, bounded, then limn→∞ xn = inf{xn : n ∈ N}.

2.4 Cauchy

Definition 4 (Cauchy sequence). Given (xn), we say (xn) is a Cauchy sequence if ∀ϵ > 0 : ∃N > 0 s.t.

∀n,m > N we have |xn − xm| < ϵ.

Theorem 10. (xn) converges ⇔ xn is a Cauchy sequence.

Proof. For ⇒: Given limn→∞ xn = x. By definition, ∀ϵ > 0 : ∃N > 0 s.t. |xn − x| < ϵ/2 ∀n > N .

Then, we have ∀n,m > N :

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |x− xm| < ϵ/2 + ϵ/2 = ϵ

For ⇐: Given (xn) is Cauchy.

Choose ϵ = 1. Then, ∃N1 > 0 s.t. ∀n,m > N1: |xn − xm| < 1.

8
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Thus, if m > N1:

|xm| = |xm − xN1+1 + xN1+1| ≤ |xm − xN1+1|+ |xN1+1| ≤ 1 + |xN1+1|

i.e. (xn) is bounded. Thus, its limsup and liminf exist and are finite.

Let lim supn→∞ xn = a, and we prove limn→∞ xn = a.

(1) By property of limsup, ∀ϵ > 0 : ∃Nϵ > 0 s.t. xn ≤ a+ ϵ/2 ∀n > Nϵ

(2) By definition of Cauchy sequence, ∀ϵ > 0 : ∃N ′ > 0 s.t. |xn − xm| < ϵ/2 ∀n,m > N ′

(3) By property of limsup again, ∀ϵ > 0 : ∃n∗ > max(Nϵ, N
′) s.t. xn∗ > a− ϵ/2

Combining (1) and (3), we have: |xn∗ − a| < ϵ/2 ∀n∗ > max(Nϵ, N
′)

Combining (2) and above, we have: |xn−a| = |xn−xn∗+xn∗−a| ≤ |xn − xn∗ |+|xn∗ − a| < ϵ/2+ϵ/2 = ϵ

Thus, limn→∞ xn = a by defintion.

Problem: [Exercise 10.6]

(a) Let (sn) be a sequence s.t. |sn+1 − sn| < 1
2n

∀n ∈ N. Prove (sn) is Cauchy.

Proof. Choose m > n > N > 0:

|sn − sm| ≤ |sn − sn+1|+ |sn+1 − sn+2|+ · · ·+ |sm−1 − sm| ≤
1

2n
+

1

2n+1
+ · · ·+ 1

2m−1
≤ 2−N < ϵ

for large enough N >> 1.

(b) Does it hold if |sn+1 − sn| < 1
n

∀n ∈ N?

Solution: No. Consider sn =
∑n

k=1
1
k
→ ∞ as n → ∞. Thus, the sequence (sn) is not bounded

from above, and (sn) cannot be Cauchy. However, sn+1 − sn = 1
n+1

< 1
n
is satisfied.

9
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2.5 Subsequences

Proposition 2. Every subsequence of a a convergent sequence converges to the limit of the sequence.

Proof. Given a sequence (xn) and limn→∞ xn = x. Fix ϵ > 0.

By definition, there exists N > 0 s.t. |xn − x| < ϵ ∀n > N .

Observe a subsequence (xnk
). Pick K > 0 such that nk > N for k > K. Then:

|xnk
− x| < ϵ ∀k > K

and (xnk
) converges to x.

2.6 B-W theorem

Theorem 11 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subse-

quence.

Key: Every bounded sequence must have a monotonic subsequence.

Proof. We construct a subsequence converging to y = lim supxn.

∀ϵ > 0:

(a) ∃N ∈ N s.t. xn < y + ϵ.

(b) ∀N ∈ N : ∃n > N s.t. xn > y + ϵ.

• Choose ϵ1 =
1
2
. Then ∃N1 s.t. xn < y + ϵ1 ∀n > N . Also, there exists n1 s.t. xn > y − ϵ1.

So, |xn1 − y| < ϵ1.

• Choose ϵ2 = 1
22
. Then ∃N2 s.t. xn < y + ϵ2 ∀n > N . Also, there exists n2 > max(N1, N2) s.t.

xn > y − ϵ2.

So, |xn2 − y| < ϵ2.

• Iteratively, for ϵk =
1
2k

: ∃Nk s.t. xn < y+ϵk ∀n > N . Also, ∃nk > max(Nk, Nk−1) s.t. xnk
> y−ϵk.

Thus, |xnk
− y| < ϵk.

Therefore, xnk
→ y and (xnk

) converges.

10



Chapter 3

Series

”Series is infinite sum of real numbers”

Definition 5 (Series). Given a sequence (an). The series
∑∞

n=1 an converges to a sum S ∈ R if the

sequence (Sn) of partial sums Sn =
∑n

k=1 ak converges to S as n → ∞. Otherwise, the series diverges.

Key:
∑

an converges implies lim an = 0.

Theorem 12 (Cauchy condition for series). The series
∑∞

n=1 an converges iff ∀ϵ > 0 : ∃N ∈ N s.t. the

tail of the series can be arbitrarily small:

n∑
k=m+1

|ak| < ϵ ∀n > m > N

Proof. The series converges iff the sequence of partial sums (Sn) is Cauchy:

∀ϵ > 0 : ∃N ∈ N s.t. |Sn − Sm| =
n∑

k=m+1

|ak| < ϵ ∀n > m > N

Corollary 4. If the series
∑∞

n=1 an converges, then limn→∞ an = 0.

Proof. If the series converges, then it is Cauchy. Choose m = n− 1:

|Sn − Sn−1| = |an| < ϵ ∀ϵ > 0, n > n− 1 > N

Definition 6 (Absolute convergence). The series
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an| converges.

Key: Absolute convergence implies convergence.

11
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3.1 Three tests

Theorem 13 (Comparison test). Suppose that bn ≥ 0 and
∑∞

n=1 bn converges. If |an| ≤ bn, then
∑∞

n=1 an

converges.

Proof. Since
∑

bn converges, it satisfies the Cauchy condition. Since:

n∑
k=m+1

|ak| ≤
n∑

k=m+1

bk

the series
∑

|an| also satisfies the Cauchy condition. Therefore
∑

an converges too.

Theorem 14 (Ratio test). Given a sequence (an).

• It converges absolutely if lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1.

• It diverges if lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1.

Theorem 15 (Root test). Given a sequence (an) and r = lim supn→∞ |an|1/n.
Then

∑∞
n=1 an converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Theorem 16 (Ratio implies Root). Given a sequence (an).

• If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then lim supn→∞ |an|1/n < 1.

• If lim supn→∞

∣∣∣an+1

an

∣∣∣ > 1, then lim supn→∞ |an|1/n > 1.

12



Chapter 4

Limit of a function

Boundedness of a function with a limit. f : A → R, a is an accumulation point of A, limx→a f(x) =

f(a). Then ∃δ > 0 and K > 0 s.t. if |x− a| < δ then |g(x)| ≤ K.

Definition 7 (Accumulation point). Given a set A. Then c is called an accumulation point of A if for

any δ > 0, there exists a ̸= c s.t. |a− c| < δ and a ∈ A.

Definition 8 (Limit of a function). Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an

accumulation point of A. Then:

lim
x→c

f(x) = L ⇔ ∀ϵ > 0 : ∃δ > 0 s.t. if |x− c| < δ, x ∈ A then |f(x)− L| < ϵ (4.1)

4.0.1 Classes of sets

Definition 9 (Open set). A set A ⊆ R is open, if for any point a ∈ A, there exists an interval satisfying

a ∈ (b, c) and (b, c) ⊆ A.

Proposition 3. A is open set iff for any a ∈ A, there exists δ > 0 s.t. for any point c satisfying d(a, c) < δ,

we have c ∈ A.

Definition 10 (Interior point). Given a set A ⊆ R, a ∈ A is called interior point of A if there exists an

interval satisfying a ∈ (b, c) and (b, c) ∈ A.

Definition 11 (Accumulation point). Given a set A ⊆ R, a ∈ A is called an accumulation point of A if

for any interval satisfying a ∈ (b, c), we always have (b, c) ∩ A\{a} ≠ ∅.

Proposition 4. Given a set A

• a is an interior point of A iff there exists ϵ > 0 s.t. for any point c satisfying d(a, c) < ϵ, we have

c ∈ A.

• a is an accumulation point of A iff for any ϵ > 0, there exists a point c s.t. d(a, c) < ϵ, c ∈ A, and

c ̸= a.

13
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Chapter 5

Continuous function

Definition 12 (Continuous function). f : A → R, A ⊆ R, c ∈ A.

f is continuous at c if ∀ϵ > 0 : ∃δ > 0 s.t. if |x− c| < δ then |f(x)− f(c)| < ϵ.

Alternatively, f is continuous at c if limx→c f(x) = f(c).

5.1 Uniform continuity

Definition 13. f : A → R, f is uniformly continuous function in A if ∀ϵ > 0 : ∃δϵ > 0 s.t. for x, y ∈ A

if |x− y| < δϵ then |f(x)− f(y)| < ϵ.

Key: Continuous function on a closed, bounded (compact) set is uniform continuous!

Proposition 5. f is not uniform continuous ⇔ ∃ϵ0 > 0 and two sequences (xn), (yn) s.t.

lim
n→∞

|xn − yn| = 0 but |f(xn)− f(yn)| > ϵ0 ∀n

Definition 14 (Lipschitz function). f is L-Lipschitz if

∀x, y : |f(x)− f(y)| ≤ L · |x− y|

Then f is uniform continuous.

Problem: [Mid-Term-1] Let f(x), g(x) be continuous functions on [0, 1] s.t. f(0) < g(0) and f(1) > g(1).

Let

E = {x|x ∈ [0, 1], f(x) < g(x)}

(a) Prove supE < 1. Key: By continuity, there exists δ > 0 s.t. ∀x ∈ [1− δ, 1] : f(x) > g(1).

(b) Prove f(supE) = g(supE).

14
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Theorem 17 (Compact means sequentially compact). A set A is compact (bounded and closed) if and

only if A is sequentially compact, meaning that for any sequences (xn) of A, there exists a subsequence

(xnk
) such that xnk

converges to some point a ∈ A.

Proof.

For ⇒: Pick any (xn) ⊆ A. Since A is bounded, (xn) is a bounded sequence.

By Bolzano-Weierstrass theorem, there must exist a convergent subsequence (xnk
). Let limk→∞ xnk

= a.

We show that a ∈ A. (Proof by contradiction.)

Assume a ∈ Ac. Since Ac is open, ∃ϵ∗ > 0 s.t. (a− ϵ∗, a+ ϵ∗) ∈ Ac ⇔ (a− ϵ∗, a+ ϵ∗) ∩ A = ∅.

Then, (a− ϵ∗, a+ ϵ∗) ∩ {xnk
} = ∅ and |xnk

− a| > ϵ∗. Contradiction.

For ⇐: We are given a sequentially compact set A. (Proof by contradiction.)

Assume A is not compact. Then A is either unbounded or open.

Assume A is unbounded. Then, we can construct a sequence (xn) in A that diverges (xn → ∞ as

n → ∞), meaning it has no convergent subsequence. Contradiction.

Now, assume A is open. Then, there exist a sequence (xn) in A s.t. it converges a point a ∈ Ac.

Thus, every subsequence (xnk
) of this sequence also converges to a.

However, every sequence in A has a convergent subsequence with its limit in A. Contradiction.

Therefore, A must be bounded and closed, meaning it is compact.

Theorem 18. If K ⊂ R is compact and f : K → R is continuous, then f(K) is compact.

Theorem 19 (Theorem 4.4). If f : K → R is continuous and K ⊂ R is compact, then f is uniformly

continuous on K.

Proof. Suppose for contradiction that f is not uniformly continuous on K. Then, by reverse definition of

uniform continuity, there exists ϵ0 > 0 and sequences (xn), (yn) in K such that

lim
n→∞

|xn − yn| = 0 and |f(xn)− f(yn)| ≥ ϵ0 for every n ∈ N.

Since K is compact, there is a convergent subsequence (xni
) of (xn) such that limi→∞xni

= x ∈ K.

Moreover, since (xn − yn) → 0 as n → ∞, it follows that

lim
i→∞

yni
= lim

i→∞
[xni

− (xni
− yni

)] = lim
i→∞

xni
− lim

i→∞
(xni

− yni
) = x,

so (yni
) also converges to x. Then, since f is continuous on K,

lim
i→∞

|f(xni
)− f(yni

)| =
∣∣∣ lim
i→∞

f(xni
)− lim

i→∞
f(yni

)
∣∣∣ = |f(x)− f(x)| = 0,

but this contradicts the non-uniform continuity condition |f(xni
)− f(yni

)| ≥ ϵ0.

15
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Theorem 20 (Weierstrass extreme value theorem). If f : A → R is continuous and A ⊂ R is compact,

then f is bounded on A and f attains its maximum and minimum values on A.

16
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5.2 Intermediate value theorem

Lemma 1 (Intermediate value). Given a continuous function f : [a, b] → R. If f(a) < 0 and f(b) > 0, or

f(a) > 0 and f(b) < 0, then there exists c ∈ (a, b) s.t. f(c) = 0.

Proof. Assume f(a) < 0 and f(b) > 0.

Let E = {x ∈ [a, b] : f(x) < 0}.
Then, a ∈ E and E is a nonempty set bounded above by b. By completeness axiom, supE exists.

Let c = supE. We show that f(c) = 0.

By definition of continuity, ∀ϵ > 0 : ∃δ > 0 s.t. if |x− c| < δ then:

|f(x)− f(c)| < ϵ =
|f(c)|
2

(Proof by contradiction.)

Assume f(c) < 0: c ̸= b. For all x ∈ [a, b] s.t. |x− c| < δ:

f(x) = f(c) + f(x)− f(c) < f(c)− f(c)

2
=

f(c)

2
< 0

i.e. x ∈ E for any x ∈ [c− δ, c+ δ] ∩ [a, b]. Since c < b, there is x∗ = c+ δ ∈ E s.t. x∗ > c. Contradiction.

(Note that we use denseness of Q here to show c < c+ δ < b exists.)

Assume f(c) > 0: c ̸= a. For all x ∈ [a, b] s.t. |x− c| < δ:

f(x) = f(c) + f(x)− f(c) < f(c) +
f(c)

2
> 0

i.e. x ̸∈ E for any x ∈ [c− δ, c+ δ] ∩ [a, b]. Then, ∀x ∈ [c− δ, c] : f(x) > 0 and x ̸∈ E.

Thus, e < c− δ ∀e ∈ E, i.e. c− δ is a lower upper bound than c. Contradiction.

17



Chapter 6

Differentiable function

6.1 Derivative

Definition 15. f : (a, b) → R, c ∈ (a, b).

We say f is differentiable at point c if f ′(c) = limh→0
f(c+h)−f(c)

h
= limx→c

f(x)−f(c)
x−c

exists.

f ′(c) exists ⇔ f ′(c+) = f ′(c−)

6.1.1 Properties

Theorem 21 (Continuity). If f is differentiable at c, then f is continuous at c.

Proof.

lim
x→c

f(x)− f(c) = lim
h→c

f(c+ h)− f(c) = lim
h→0

f(c+ h)− f(c)

h
· h = f ′(c) · 0 = 0

Theorem 22 (Algebraic property). f, g are differentiable at c.

1. (f ± g)′(c) = f ′(c)± g′(c)

2. (f · g)′(c) = f ′(c)g(c) + f(c)g′(c) Key : limh→0
[f(c+h)−f(c)]g(c+h)−f(c)[g(c+h)−g(c)]

h

3. if g(c) ̸= 0: (f
g
)′(c) = f ′(c)g(c)−f(c)g′(c)

g2(c)

Theorem 23 (Chain rule). f, g, g is differentiable at c, f differentiable at g(c). Then, f ◦g is differentiable

at c, where (f(g(c)))′ = f ′(g(c)) · g′.

Proof.

lim
h→0

f(g(c+ h))− f(g(c))

h
= lim

h→0

f(g(c+ h))− f(g(c))

g(c+ h)− g(c)

g(c+ h)− g(c)

h
= f ′(g(c)) · g′(c)

18
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6.2 Mean value theorem

Proposition 6. If x0 is the max or min point on (a, b), then f ′(x0) = 0.

Proof.

f ′(x0) = lim
h→0+

f(x0 + h)− f(x0)

h ≥ 0
≤ 0 = lim

h→0−

f(x0 + h)− f(x0)

h ≤ 0
≥ 0 = 0

Theorem 24 (Rolle). f is continuous on [a, b], differentiable on (a, b).

Given f(a) = f(b).

∃c ∈ (a, b) : f ′(c) = 0

Proof. Since f is a continuous function on a closed interval [a, b], f attains its max/min values on [a, b]

(Weierstrass extreme value theorem).

If a, b are max/min, pick c to be min/max. Else, if a, b are not max/min, pick c to be max.

Theorem 25 (Mean value). f is continuous on [a, b], differentiable on (a, b).

∃c ∈ (a, b) : f ′(c) =
f(b)− f(a)

b− a

Proof. Define g(x) = f(x)− f(a)−
[
f(b)−f(a)

b−a

]
(x− a), which is also cont. on [a, b], diff. on (a, b):

g′(x) = f ′(x)− f(b)− f(a)

b− a

where g(a) = 0 = g(b). By Rolle’s theorem, ∃c ∈ (a, b) : g′(c) = 0.

Corollary 5. f : (a, b) → R is differentiable on (a, b), f ′(x) = 0 for all x ∈ (a, b). Then f is constant on

(a, b).

Key: fix x0 ∈ (a, b). By MVT, ∀x ∈ (a, b) s.t. x ̸= x0 : ∃c between x and x0 s.t. f
′(c) = f(x)−f(x0)

x−x0
:= 0.

Corollary 6. f, g : (a, b) → R is differentiable on (a, b), f ′(x) = g′(x) ∀x ∈ (a, b).

Then, f(x) = g(x) + C for some constant C.

Key: (f − g)′(x) = 0 ∀x ∈ (a, b). Then, f − g is a constant function on (a, b).

Corollary 7. f : (a, b) → R is differentiable on (a, b). f is increasing on (a, b) iff f ′(x) ≥ 0 ∀x ∈ (a, b).

Proof. ⇒: given f is increasing, consider any x ∈ (a, b): f ′(x) = limh→0
f(x+h)−f(x)

h
≥ 0.

⇐: given f ′ ≥ 0, consider a < x < y < b. By MVT, ∃c ∈ (x, y) : f ′(c) = f(y)−f(x)
y−x

≥ 0, i.e.

f(y) ≥ f(x).

19
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6.3 Inverse function theorem

Proposition 7. f : A → R is one-to-one on A ⊂ R. Assume its inverse f−1 : B → R exists.

Assume f is differentiable at c ∈ A, f−1 is differentiable at f(c) ∈ B.

Then, given f ′(c) ̸= 0, we have:

(f−1)′(f(c)) =
1

f ′(c)
(6.1)

Proof. By definition, f−1(f(x)) = x. Take derivative on both sides and apply chain rule.

Theorem 26 (Inverse function). f : A → R, c is an interior point, f ′(x) is continuous on A.

If f ′(c) ̸= 0, then one can find δ > 0 s.t.

(1) f is one-to-one on (c− δ, c+ δ) ⇒ f−1 exists on (c− δ, c+ δ)

(2) f−1 is differentiable on f((c− δ, c+ δ)) ⇒ (f−1)′(f(c)) = 1
f ′(c)

Proof. WLOG assume f ′(c) > 0. Then, since f ′ is continuous, f ′(x) > 0 for x ∈ (c − δ, c + δ), i.e. f is

increasing, one-to-one on x ∈ (c− δ, c+ δ).

We prove that f−1 is continuous on a ∈ f((c− δ, c+ δ)) by showing limy→a f
−1(y) = f−1(a).

∀ϵ > 0 : ∃δ = min{a− f(f−1(a)− ϵ), f(f−1(a) + ϵ)− a} s.t. if |y − a| < δ then |f−1(y)− f−1(a)| < ϵ.

Consider:

lim
y→a

f−1(y)− f−1(a)

y − a
= lim

h→0

f−1(a+ h)− f−1(a)

h
= lim

h→0

f−1(a+ h)− f−1(a)

f(f−1(a+ h))− f(f−1(a))
= lim

x→c

x− c

f(x)− f(c)
=

1

f ′(c)
(6.2)

6.4 L’Hospital’s rule

Theorem 27 (Cauchy mean value). f, g are continuous on [a, b], differentiable on (a, b).

∃c ∈ (a, b) : f ′(c) · [g(b)− g(a)] = g′(c) · [f(b)− f(a)]

Proof. Define h(x) = [f(x)− f(a)][g(b)− g(a)]− [f(b)− f(a)][g(x)− g(a)], where h(a) = 0 = h(b).

By Rolle, ∃c ∈ (a, b) : h′(x) = 0.

Theorem 28 (L’Hospital’s rule). f, g : (a, b) → R are differentiable on (a, b), where g′(x) ̸= 0 ∀x ∈ (a, b)

and limx→a+ f(x) = 0 = limx→a+ g(x).

lim
x→a+

f ′(x)

g′(x)
= L ⇒ lim

x→a+

f(x)

g(x)
= L

20
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Proof. Extend to f, g : [a, b) → R by setting up f(a) = g(a) = 0.

Fix x ∈ (a, b). By MVT, ∃c ∈ (a, x) s.t. g′(c) = g(x)−g(a)
x−a

.

Note that g(x) = g(x)− g(a) = g′(c) · (x− a) ̸= 0 by given conditions, so g(x) ̸= 0 ∀x ∈ (a, b).

By Cauchy MVT, ∃c ∈ (a, b) s.t. f ′(c)
g′(c)

= f(x)−f(a)
g(x)−g(a)

= f(x)
g(x)

is well-defined. As x → a+, c → a+.

6.5 Taylor’s theorem

Definition 16 (Taylor series). f : A → R, c ∈ (a, b). f has n-th order derivative.

Then, the n-th order Taylor series expansion is:

Pn(x) = f(c) + f ′(c) · (x− c) +
f ′′(c)

2!
· (x− c)2 + · · ·+ f (n)(c)

n!
· (x− c)n

Problem: If f(x) is a polynomial of degree n, then f(x) = Pn(x).

Theorem 29 (Taylor with Largrange Remainder). f : A → R, c ∈ (a, b). f is (n+1)-th order differentiable

on (a, b). For every a < x < b, there exists ξx,c between x and c s.t.

Rn(x) = f(x)− Pn(x) =
f (n+1)(ξx,c)

(n+ 1)!
(x− c)n+1

where ξx,c is between x and c.

Proof. x, c are fixed. Goal: find ξx,c.

Define g(t) = f(x)− f(t)− f ′(t) · (x− t)− f ′′(t)
2!

· (x− t)2 − · · · − f (n)(t)
n!

· (x− t)n. Then, we have:

g(x) = 0

g(c) = f(x)− Pn(x)

g′(t) = −f ′(t)− f ′′(t) · (x− t) + f ′(t)− f (3)(t)

2!
· (x− t)2 + f ′′(t) · (x− t)− . . .

= −fn+1(t)

n!
· (x− t)n

Define h(t) = g(t)−
(
x−t
x−c

)n+1 · g(c). Then, we have:

h(x) = h(c) = 0

By MVT, there exist some ξx,c s.t. h
′(ξx,c) = 0:

h′(ξx,c) = g′(ξx,c) + (n+ 1)
(x− ξx,c)

n

(x− c)n+1
· g(c) = 0
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Thus, we have:

(n+ 1)
(x− ξx,c)

n

(x− c)n+1
· g(c) = f (n+1)(ξx,c)

n!
· (x− ξx,c)

n

Therefore, we have:

g(c) =
f (n+1)(ξx,c)

(n+ 1)!
· (x− c)n+1

22



Chapter 7

Sequences and series of functions

7.1 Uniform convergence

Definition 17 (Pointwise convergence). We say fn(x) → f pointwisely if limn→∞ fn(x) = f(x) ∀x

⇔ ∀x ∈ A,∀ϵ > 0 : ∃Nϵ,x > 0 s.t. |fn(x)− f(x)| < ϵ ∀n > Nϵ,x

Definition 18 (Uniform convergence). We say fn(x) → f(x) uniformly if ∀ϵ > 0 ∃Nϵ > 0 s.t.

|fn(x)− f(x)| < ϵ ∀n > Nϵ, ∀x

Definition 19 (Cauchy condition for uniform convergence). We say (fn(x)) is uniformly Cauchy if ∀ϵ > 0

∃Nϵ > 0 s.t. |fn(x)− fm(x)| < ϵ ∀n,m > Nϵ,∀x

Theorem 30. Uniform convergence ⇔ uniform Cauchy.

Proof. ⇒: |fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ϵ.

⇐: Fix x. Note that (fn(x)) is a Cauchy sequence, i.e. (fn(x)) is a convergent sequence.

Let limn→∞ fn(x) = f(x). Then, we have:

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ϵ+ 0 ∀n > N,m → ∞

Theorem 31. {fn(x)}, fn(x) : A → R each of fn is bounded. If fn → f uniformly, then f is also a

bounded function.

Proof. Key: show |f(x)| is bounded, independent of x.

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < 1 +M ∀x

23
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Choose ϵ = 1. Since fn → f uniformly, there exists N > 0 s.t. |fn(x)− f(x)| < 1 ∀n > N,∀x.
Choose n = N + 1. Note that fN+1 is bounded, i.e. |fN+1| < M ∀x.

Theorem 32. {fn(x)}, fn(x) : A → R each of fn is continuous. If fn → f uniformly, then f is also a

continuous function.

Proof. Key: show limx→c f(x) = f(c).

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)| < 2ϵ

3
+

ϵ

3

Since fn → f uniformly, ∀ϵ > 0 there exists N > 0 s.t. |fn(x)− f(x)| < ϵ/3 ∀n > N,∀x.
Choose n = N +1: since fN+1 is a continuous function, ∀ϵ > 0 : ∃δN+1,ϵ s.t. |fN+1(x)− fN+1(c)| < ϵ/3

if |x− c| < δN+1,ϵ.

Theorem 33. {fn(x)}, fn(x) : A → R each of fn is differentiable. Assume fn → f pointwisely, f ′
n → g

uniformly. Then, f is also differentiable and f ′ = g.

Proof. Key: show f ′(c) = limx→c
f(x)−f(c)

x−c
= g(c).

∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣+ ∣∣∣∣fn(x)− fn(c)

x− c
− f ′

n(c)

∣∣∣∣+ |f ′
n(c)− g(c)|

(1) Note that we can choose arbitrary m → ∞ so that first term goes to 0:∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(c)

x− c
− fm(x)− fm(c)

x− c

∣∣∣∣+ ∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣
By MVT for the second term, there is some ξ between x and c s.t. (fm−fn)

′(ξ) = (fm−fn)(x)−(fm−fn)(c)
x−c

.

Since f ′
n → g uniformly, (f ′

n(x)) is uniformly Cauchy: ∀ϵ > 0 : ∃N s.t.

∀n,m > N2 : |f ′
n(x)− f ′

m(x)| < ϵ/3 ∀x

(2) Choose sufficiently large n > max(N1, N2) Since fn is differentiable, ∃δ > 0 s.t. if |x − c| < δ then∣∣∣fn(x)−fn(c)
x−c

− f ′
n(c)

∣∣∣ < ϵ/3.

(3) f ′
n → g uniformly, then ∀ϵ > 0 : ∃N2 > 0 s.t. |f ′

n(x)− g(x)| < ϵ/3 ∀n > N2,∀x.
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7.2 Series of functions

Definition 20. {fn(x)}, fn(x) : A → R.
We say that

∑∞
n=1 fn(x) converges pointwisely if limn→∞ Sn(x) = limn→∞

∑n
k=1 fk(x) converges point-

wisely.

Theorem 34. {fn(x)}, fn(x) : A → R.

∞∑
n=1

fn(x) converges uniformly ⇔ ∀ϵ > 0 : ∃N > 0 s.t.

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ < ϵ ∀n > m > N,∀x

Proof. ⇒: Note that (Sn(x)) ia a uniform Cauchy sequence. Then, (Sn) converges.

Fix x. Apply Cauchy condition for series: Sn(x)− Sm(x).

Theorem 35 (Comparison test). {fn(x)}, fn(x) : A → R.
If we can find {Mn} s.t. Mn ≥ 0,

∑∞
n=1 Mn < ∞ and |fn(x)| < Mn ∀n,∀x, then

∑∞
n=1 fn(x) converges

uniformly.

Proof. Because
∑

Mn < ∞ converges, ∀ϵ > 0 : ∃N > 0 s.t. we have∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ ≤ ∑
k=m+1

|fk(x)| <
n∑

k=m+1

Mk < ϵ ∀n > m > N
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7.3 Power series
∞∑
n=1

an(x− c)n

where c ∈ R, {an} ⊆ R.
There always exists radius of convergence R, radius of uniform convergence 0 ≤ ρ < R.

Proposition 8. If
∑∞

n=1 anx
n
0 converges for some xn ∈ R, where |x0| > 0, then

∑∞
n=1 anx

n converges for

any |x| < |x0|.

Proof. Since
∑∞

n=1 anx
n
0 converges, limn→∞ anx

n
0 = 0, i.e. a sequence (anx

n
0 ) is bounded.

∃M > 0 s.t. |anxn
0 | < M ∀n.

|anxn| = |anxn
0 · ( x

x0
)n| < M ·

∣∣∣ x
x0

∣∣∣n → 0 as n → ∞.

Theorem 36. Define fn(x) = an(x− c)n. Then, we can find R ≥ 0 s.t.

(1) if |x| < R,
∑∞

n=1 |fn(x)| converges, if |x| > R,
∑∞

n=1 fn(x) diverges.

(2) if |x| ≤ ρ,
∑∞

n=1 fn(x) converges uniformly.

Proof. (1) Define R = sup{|x| :
∑∞

n=1 anx
n}.

Let 0 < R < ∞. By definition of sup, ∃x0 s.t. |x| < |x0| < R and
∑∞

n=1 anx
n
0 converges. When

|x| > R, because R is the upper bound, we must have |x| ̸∈ {|x| :
∑∞

n=1 anx
n converges}.

Let R = 0.
∑∞

n=1 anx
n
0 diverge always.

Let R = ∞. ∃x0 s.t. |x0| > |x| always, i.e. always converges.

(2) Given ρ < R, since R is sup, ∃x0 s.t. ρ < |x0| < R and
∑

anx
n
0 converges. Then, limn→∞ anx

n
0 = 0

and ∃M > 0 s.t. |anxn
0 | < M ∀n.

|anxn| = |anxn
0 · ( x

x0
)n| ≤ M ·

∣∣∣ x
x0

∣∣∣n = M ·
∣∣∣ ρ
x0

∣∣∣n → 0 as n → ∞,∀|x| < ρ , i.e. independent of x.

Theorem 37. (1) R = limn→∞

∣∣∣ an
an+1

∣∣∣ if limit exists.

(2) R = 1
lim supn→∞ |an|1/n

.

Proof. (1) According to ratio test, converges if lim
∣∣∣an+1xn+1

anxn

∣∣∣ = lim
∣∣∣an+1

an

∣∣∣ · |x| < 1.

(2) According to root test, converges if lim sup n
√
an|x|n = lim sup n

√
an · |x| < 1

Proposition 9.
∑∞

n=1 anx
n has the same convergent radius R as (its derivative) a1+

∑∞
n=1(n+1)an+1x

n.
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Proof. Note that limsup always exists.

R =
1

lim sup n
√
an

=
1

lim sup n
√
nan

=
1

lim sup n+1
√
(n+ 1)an

Theorem 38. f(x) is infinite-differentiable on (−R,R).

Proposition 10. R, S > 0, functions f(x) =
∑∞

n=1 anx
n in |x| < R,
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Chapter 8

Integrable functions

8.1 Supremum and infimum of functions

Proposition 11. If f, g : A → R are bounded functions, then:∣∣∣∣sup
A

f − sup
A

g

∣∣∣∣ ≤ sup
A

|f − g|,
∣∣∣inf
A

f − inf
A

g
∣∣∣ ≤ sup

A
|f − g| (8.1)

Proof. sup f ≤ sup(f − g) + sup g ≤ sup |f − g|+ sup g. Use sup(−f) = − inf f .

8.2 Riemann integrable

Definition 21 (Upper and lower Riemann sum).

U(f ;P ) =
n∑

k=1

sup
[xk−1,xk]

f · (xk − xk−1) and U(f) = inf
P

U(f ;P )

L(f ;P ) =
n∑

k=1

inf
[xk−1,xk]

f · (xk − xk−1) and L(f) = sup
P

L(f ;P )

(8.2)

Definition 22. A function f : [a, b] → R is Riemann integrable on [a, b] if it is bounded and U(f) = L(f).

Definition 23. A partition Q = {J1, . . . , Jm} is a refinement of a partition P = {I1, . . . , In} if every

interval Ik in P is an almost disjoint union of one or more intervals Jl in Q (m ≥ n).

Theorem 39. Let f : [a, b] → R be bounded, P be a partition on [a, b], Q be a refinement of P . Then

U(f ;Q) ≤ U(f ;P ), L(f ;P ) ≤ L(f ;Q) (8.3)

Proposition 12. If f : [a, b] → R is bounded and P,Q are partitions of [a, b], then L(f ;P ) ≤ U(f,Q).

Proof. Let R be a common refinement of P and Q. Then: L(f ;P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q).
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Proposition 13. If f : [a, b] → R is bounded, then L(f) ≤ U(f).

Proof. Consider A = {L(f ;P ) : P ∈ Π}, B = {U(f ;P ) : P ∈ Π}.
From previous proposition, L ≤ U ∀L ∈ A,U ∈ B. Thus, L(f) = supA ≤ inf B = U(f).

8.3 Cauchy condition for integrability

Theorem 40. A bounded function f : [a, b] → R is Riemann integrable iff for every ϵ > 0 there exists a

parition P of [a, b] (may depend on ϵ) s.t.

U(f ;P )− L(f ;P ) < ϵ (8.4)

Proof. ⇐: Given that Cauchy condition holds for ϵ > 0 and a partition P .

Note that U(f) ≤ U(f ;P ), L(f) ≥ L(f ;P ). Then, we have:

0 ≤ U(f)− L(f) ≤ U(f ;P )− L(f ;P ) < ϵ

so U(f) = L(f), and f is Riemann integrable by definition.

⇒: Given that f is integrable. Let ϵ > 0. Then, there exist partitions Q,R s.t.

U(f ;Q) < U(f) +
ϵ

2
, L(f ;R) > L(f)− ϵ

2

Let P be a common refinement of Q and R. Then:

U(f ;P )− L(f ;P ) ≤ U(f ;Q)− L(f ;R) ≤ U(f)− L(f) + ϵ

where U(f) = L(f) by definition.

8.4 Continuous, monotonic functions

Theorem 41. A continuous function f : [a, b] → R on a compact interval is Riemann integrable.

Proof. A contitnuous function on a compact set is bounded and uniformly continuous.

Thus, ∀ > 0 : ∃δ > 0 s.t. |f(x)− f(y)| < ϵ
b−a

∀x, y ∈ [a, b] satisfying |x− y| < δ.

Choose a partition P = {I1, . . . , In} s.t. |Ii| < δ ∀i.
A function attains its max value Mk at xk and min value mk at yk in compact interval Ik. Since

|xk − yk| < δ, we have Mk −mk <
ϵ

b−a
:

U(f ;P )− L(f ;P ) =
n∑

k=1

Mk|Ik| −
n∑

k=1

mk|Ik| =
n∑

k=1

(Mk −mk)|Ik| <
ϵ

b− a

n∑
k=1

|Ik| < ϵ
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Theorem 42. A monotonic function f : [a, b] → R on a compact interval is Riemann integrable.

Proof. Let f be monotonic increasing: f(x) ≤ f(y) ∀x ≤ y.

Choose a partition Pn = {I1, . . . , In} of n subintervals Ik = [xk1 , xk] of [a, b], each of length b−a
n

with

endpoints

xk = a+ (b− a)
k

n
k = 0, 1, 2, . . . , n

Since f is increasing, Mk = supIk
f = f(xk), mk = infIk f = f(xk−1).

U(f ;Pn)− L(U ;Pn) =
n∑

k=1

(Mk −mk)(xk − xk−1) =
b− a

n

n∑
k=1

[f(xk)− f(xk−1)] =
b− a

n
[f(b)− f(a)]

which goes to 0 as n → ∞.

8.5 Properties

Theorem 43. Given f, g : [a, b] → R are Riemann integrable.

(1) fg is Riemann integrable

(2) f
g
is Riemann integrable if 1

g
is bounded

Proof. (1) Since f, g are Riemann integrable, ∃M > 0 s.t. |f |, |g| ≤ M .

Pick ∀x, y ∈ A = [tk−1, tk]:

f(x)g(x)−f(y)g(x) + f(y)g(x)− f(y)g(y) ≤ M(|f(x)− f(y)|+ |g(x)− g(y)|)

≤ M((sup f − inf f) + (sup g − inf g))

Note that |f(x)− f(y)| ≤ sup f − inf f ∀x, y.

Then, we have:

U(fg, P )− L(fg, P ) ≤ M · [U(f, P )− L(f, P ) + U(g, P )− L(g, P )] ∀P

Since f, g are Riemann integrable, ∀ϵ > 0 : ∃R s.t.

U(f,R)− L(f,R) ≤ ϵ

2M

U(g,R)− L(g,R) ≤ ϵ

2M
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8.5.1 Linearity, monotonicity, additivity

Theorem 44 (Linearity). f : [a, b] → R is integrable and c ∈ R, then cf is integrable and∫ b

a

cf = c

∫ b

a

f

Proof. Observe c ≥ 0. Observe −f , where sup(−f) = − inf(f). Then, observe c < 0 where c = −|c|.

Theorem 45 (Monotonicity). f, g : [a, b] → R are Riemann integrable and f ≤ g x ∈ [a, b]. Then∫ b

a

f ≤
∫ b

a

g

Proof. Define h(x) = g(x)− f(x) ≥ 0, which is also Riemann integrable by linearity.

Then, we have inf [tk−1,tk] h ≥ 0. So, L(f, P ) ≥ 0 ∀P .

By definition,
∫ b

a
h = supP L(h, P ) ≥ 0, so

∫ b

a
g −

∫ b

a
f =

∫ b

a
h ≥ 0.

Theorem 46 (Monotonicity). If f : [a, b] → R is Riemann integrable, then |f | is also Riemann integrable

and ∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx

Proof.

|f(x)| − |f(y)| ≤ sup
A

f − inf
A

f ∀x, y ∈ A

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ) ∀P

By definition, we have:

−
∫ b

a

|f |dx ≤
∫ b

a

fdx ≤
∫ b

a

|f |dx

i.e. −b ≤ a ≤ b ⇒ |a| ≤ b.

Theorem 47 (Additivity). Choose c ∈ (a, b).

f is Riemann integrable on [a, b] ⇔ f is Riemann integrable on [a, c] and [c, b], where∫ c

a

fdx+

∫ b

c

fdx =

∫ b

a

fdx

Proof. ⇒: Given f is integrable on [a, b]. Thus, ∀ϵ > 0 : ∃P s.t. U(f ;P )− L(f ;P ) < ϵ.

Let P ′ = P ∪ {c}, and split P ′ = Q ∪R into partitions Q of [a, c] and R of [c, b].

U(f ;P ′) = U(f ;Q) + U(f ;R) and L(f ;P ′) = L(f ;Q) + L(f ;R)

U(f ;Q)− L(f ;Q) = U(f ;P ′)− L(f ;P ′)− [U(f ;R)− L(f ;R)] < U(f ;P )− L(f ;P ) < ϵ
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⇐: Given f is integrable on [a, c] and [c, b]. Let P = Q ∪R.

U(f ;Q)− L(f ;Q) <
ϵ

2
and U(f ;R)− L(f ;R) <

ϵ

2

U(f ;P )− L(f ;P ) = [U(f ;Q) + U(f ;R)]− [L(f ;Q) + L(f ;R)] < ϵ
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8.6 Fundamental theorem of calculus

Theorem 48 (Fundamental theorem of calculus).

Version 1. F (x) : [a, b] → R differentiable, f(x) = F ′(x) integrable, then
∫ b

a
f(x)dx = F (b)− F (a).

Version 2. f(x) : [a, b] → R integrable, define F (x) =
∫ x

a
f(t)dt. Then:

1. F (x) is a continuous function on [a, b]

2. if f(x) is continuous at c ∈ [a, b], then F ′(c) = f(c)

Proof. (Version 1.) Let P = {a = x0, x1, . . . , xn = b}. Then, F (b)− F (a) =
∑n

k=1[F (xk)− F (xk−1)].

By MVT, ∃c ∈ (xk−1, xk) s.t. F (xk)− F (xk−1) = f(c)(xk − xk−1):

L(f ;P ) = mk(xk − xk−1) ≤ F (xk)− F (xk−1) ≤ Mk(xk − xk−1) = U(f ;P )

where f is Riemann integrable, i.e. U(f) = L(f), and thus F (xk)− F (xk−1) =
∫ xk

xk−1
f(x)dx.

Proof. (Version 2.)

(1) Key: derive Lipschitz! Since f is Riemann integrable, it is bounded. Let |f(t)| ≤ M ∀t.

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f(t)dt

∣∣∣∣ ≤ ∫ y

x

|f(t)|dt ≤
∫ x

y

Mdt = M(x− y) ∀x < y (8.5)

so F is continuous.

(2) Given c ∈ [a, b]. Define
F (c+ h)− F (c)

h
=

1

h

∫ c+h

c

f(t)dt

Then, we have:

F (c+ h)− F (c)

h
− f(c) =

1

h

∫ c+h

c

f(t)dt− 1

h

∫ c+h

c

f(c)dt =
1

h

∫ c+h

c

[f(t)− f(c)]dt (8.6)

Since f is continuous at c, ∀ϵ > 0 : ∃δ > 0 s.t. |f(t)− f(c)| < ϵ ∀|t− c| < δ.

Choose h < δ:∣∣∣∣1h
∫ c+h

c

[f(t)− f(c)]dt

∣∣∣∣ ≤ 1

h

∫ c+h

c

|f(t)− f(c)|dt ≤ 1

h

∫ c+h

c

ϵdt =
1

h
ϵh = ϵ (8.7)

and F ′(c) = limh→0
1
h

∫ c+h

c
f(t)dt = f(c).

33



MATH 104: Intro to Analysis Midterm 1, 2, Final Spring 2025

Theorem 49 (Integration by parts). f, g : [a, b] → R differentiable, f ′, g′ integrable. Then∫ b

a

fg′dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′gdx

Proof. ∫ b

a

(fg′ + f ′g)dx =

∫ b

a

(fg)′dx = f(b)g(b)− f(a)g(a) (8.8)

Theorem 50 (Change of variable). f continuous, g differentiable. Then∫ g(b)

g(a)

f(x)dx =

∫ b

a

f(g(x)) · g′(x)dx =

∫ b

a

F ′(g(x))dx = F (g(b))− F (g(a))

8.7 Last class: integration of sequences of functions

Theorem 51. fn : [a, b] → R integrable for all n, fn → f uniformly on [a, b] as n → ∞. Then f : [a, b] → R
is Riemann integrable on [a, b] and ∫ b

a

f = lim
n→∞

∫ b

a

fn

Proof. Since fn → f uniformly, ∃N > 0 s.t.

fn(x)−
ϵ

b− a
< f(x) < fn(x) +

ϵ

b− a
∀x ∈ [a, b]

Note that L(fn − ϵ
b−a

) ≤ L(f), U(fn +
ϵ

b−a
) ≥ U(f).

Since fn is integrable and upper Riemann sums are greater than lower Riemann sums:∫ b

a

fn − ϵ ≤ L(f) ≤ U(f) ≤
∫ b

a

fn + ϵ ∀n > N

so 0 ≤ U(f)− L(f) ≤ 2ϵ, thus U(f) = L(f) and f is Riemann integrable by definition.

Note that
∣∣∣∫ b

a
fn −

∫ b

a
f
∣∣∣ ≤ ϵ ∀n > N , so

∫ b

a
fn →

∫ b

a
f as n → ∞.
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Final

Problem: Assume that f(x) is the first-order differentiable (f ′(x) exists) in [−1, 1] and
∑∞

n=1 f(
1
n
) ab-

solutely converges. Prove that f ′(0) = 0.

Hint : notice that
∑

c
n
is convergent and use proof by contradiction.

Solution:

Proof. Since
∑

f( 1
n
) converges, limn→∞ f

(
1
n

)
= 0 = f(0), where f is continuous at 0.

(Proof by contradiction.) Assume f ′(0) = c ̸= 0.

Then, we have:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
= c

∀ϵ > 0 : ∃δ > 0 s.t.

∣∣∣∣f(x)x
− c

∣∣∣∣ < ϵ =
c

2
∀|x− 0| < δ

∣∣∣∣f(x)x

∣∣∣∣ > |c|
2

∀|x| < δ

Replace x = 1
n
, i.e. |x| < δ is the same as n > 1

δ
. Then, we have:∣∣∣∣f (

1

n

)∣∣∣∣ > |c|
2n

∀n >
1

δ

Note that |c|
2

∑∞
n=1

1
n
diverges.

By comparison test,
∑∞

n=1 f
(
1
n

)
diverges, too. Contradiction.
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Problem: Let f be a bounded function on [0, 1]. Given any partition P = {0 = p0 < p1 < · · · < pm = 1}
on [0, 1], we define

len(P ) = max
o≤k≤m−1

pk+1 − pk

We also define

Un = inf
P, len(P )≥ 1

n

U(f ;P ), Ln = sup
P, len(P )≥ 1

n

L(f ;P )

Prove:

(a) limn→∞ Un and limn→∞ Ln exist.

(b) f is Riemann integrable on [0, 1] iff limn→∞ Un = limn→∞ Ln.

Solution:

(a) Proof. Note that Un is defined over smaller and smaller partitions, thus decreasing. Since Un is

bounded below by inf [0,1] f · (1− 0), limn→∞ Un exists.

Similarly, Ln is increasing and bounded above by sup[0,1] f , and thus limn→∞ Ln exists.

(b) Proof. ⇒: Given f is integrable. Then, Cauchy condition for integrability holds:

∀ϵ > 0 : ∃P s.t. U(f ;P )− L(f ;P ) < ϵ

We increase max subinterval of P further s.t. len(P ) ≥ 1
n
: Un ≤ U(f ;P ), Ln ≥ L(f ;P ).

Un − Ln ≤ U(f ;P )− L(f ;P ) < ϵ

and choosing n → ∞ yields limn→∞ Un = limn→∞ Ln.

⇐: Given limn→∞ Un = limn→∞ Ln. Then, limn→∞ Un − Ln = 0.

By def of limit, ∀ϵ > 0 : ∃N > 0 s.t. |Un − Ln − 0| < ϵ ∀n > N .

By def of limsup/liminf, ∃P,Q s.t. len(P ), len(Q) ≥ 1
n
: U(f ;P ) ≤ Un +

ϵ
2
, L(f ;Q) ≥ Ln − ϵ

2
.

Let R = P ∪Q be a common refinement:

U(f ;R)− L(f ;R) ≤ U(f ;P )− L(f ;Q) ≤ Un − Ln + ϵ
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Problem: Let f(x) be first-order differentiable on [a, b], f(a) ̸= 0, f(b) ̸= 0.

Define a sequence {xn} s.t. f(xn) = 0 for all n. Let lim infn→∞ xn = c.

(a) Prove c ∈ (a, b). Note: liminf is not necessarily part of the sequence!

(b) Prove f(c) = f ′(c) = 0.

Solution:

(a) Proof. Since f is continuous at a, f(x) ̸= 0 ∀x ∈ [a− δ, a+ δ]. Similarly for b.

So, {xn} ∈ [a+ δ, b− δ1] ⊂ (a, b) and liminf of {xn} must be inside (a, b).

(b) Proof. Let {xnk
} be a subsequence of {xn} s.t. limk→∞ xnk

= c. Then

f(c) = f( lim
k→∞

xnk
) = 0

and f ′(c) = limk→∞
f(xnk

)−f(c)

x−c
= 0 (since it is well-defined).

Problem: Let f : (a, b) → R be differentiable, |f ′(x)| ≤ M for some M > 0. Prove: limx→b− f(x) exists.

Solution:

Proof. Consider a < x < y < b: f is continuous on [x, y] differentiable on (x, y).

By MVT, ∃c ∈ (x, y) s.t. |f ′(c)| =
∣∣∣f(y)−f(x)

y−x

∣∣∣ ≤ M . Then, |f(y)− f(x)| ≤ M |y − x| ∀x, y ∈ (a, b).

For any ϵ > 0, choose δ = M
ϵ
.

Then, f is uniformly continuous: |f(y)− f(x)| ≤ M |y − x| = ϵ ∀|x− y| < δ.

Choose a sequence (xn) ⊂ (a, b) s.t. xn → b− (consider xn = b− 1/n).

Then, since (xn) converges, (xn) is a Cauchy sequence: ∀ϵ > 0 : ∃N > 0 s.t. |xn−xm| < ϵ ∀n,m > N .

Thus, the Cauchy condition for uniform convergence of f holds:

|f(xn)− f(xm)| ≤ ϵ ∀n,m > N

since |xn − xm| < δ. Thus, the sequence (f(xn)) converges and limx→b− f(xn) exists.

Note that since f is uniformly continuous, for different sequences xn → b− and yn → b−, we have

∀ϵ > 0 : ∃δ > 0 s.t. |f(xn)− f(yn)| < ϵ ∀|xn − yn| < δ, and so

lim
xn→b−

f(xn) = lim
yn→b−

f(yn)
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