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Chapter 1

Numbers

1.1 Real numbers

Theorem 1 (Completeness axiom). Every nonempty set S of real numbers that is bounded from above has

a supremum, i.e. Sup S ewists.

Corollary 1 (Archimedean Property). If a > 0 and b > 0, then for some positive integer n, we have
na > b.

Proof. Define S = {naln € N}.
(Proof by contradiction.) Assume this corrollary is wrong, i.e. Vsg € S : s < b. Thus, b is an upper
bound of S and sup S # oo.
Let s* = sup S # oo. Then, s* — a < s* since a > 0.
Also, s* — a is not the upper bound of S. Thus, there exists n € N s.t. na > s* — a.
Then, we have:
(n+1lla=na+a>s"—a+a=s"

Contradiction. s* is not upper bound of .S anymore. O
Corollary 2 (Denseness of Q). Ifa, b € Q and a < b, then there is a rational r € Q such that a < r <b.

Proof. Tt suffices to show there exists m,n € Z such that a < ™ <b.
Since b — a > 0, using Archimedean property, there exists n € N such that n(b —a) > 1.
Then, nb > na + 1. Thus, there exists m € Z s.t. nb > na O
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1.2 Proof by induction

Theorem 2. Suppose that A C N is a set of natural numbers s.t.

(a) 1€ A
(b) n € A implies (n+1) € A.

Then A = N.

1.3 sup, inf

Definition 1. Suppose A C R is a set of real numbers.
e sup A is the lowest upper bound.
e inf A is the greatest lower bound.

Key: Given € > 0, there exists a € A s.t. a <supA < a+e.



Chapter 2

Sequences

2.1 Defintion of limits

Definition 2 (Limit of a sequence). Given a sequence (xy,).

lim z, =2z < Ve>0:IN N st |z, —x|[<e Yn>N

n—oo
Definition 3. Given a sequence (x,,).
o lim, ,z,=00VM cR:ANeNst 2, >M VYVn>N

o lim, .2, =-00VMeR:ANeNst. x, <M VYn>N

2.1.1 Properties of limits
Key: lim, ,o z, =z < lim, o |z, — 2| = 0.
Proposition 1 (Uniqueness). Limit is unique.

Proof. (Proof by contradiction.) Assume lim,, . z, = x and lim,,_,, x, = 2’ s.t. = # 2’
By definition, Ve > 0: AN, N > 0 s.t. |z, —z| <€/2 Vn > N and |z, —2'| <¢/2 Vn > N’

Then, we have:
lr—2|=|r -z, +x, — 2| <|v—2| + |2, — 2| < €/2+€/2=¢
By deifnition, lim, . |z — 2’| = 0. So, z = «'.
Theorem 3 (Boundness). If limit exists, then sequence () is bounded.

Proof. Let lim,, .o z, = . Then, AN > 0 s.t. |z, —z| <1 Vn > N.
Thus, Vn > N : |z,| = |z, — 2 + x| < |z, — 2| + |z| < |z| + 1, which is a constant.
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Let M = max(|z1],..., |zn]|, |z] + 1).
Then, we have |z,| <M Vn € N, and the sequence (z,) is bounded. O

Theorem 4 (Exchange the order of limits and algebraic operations). Given (x,), (yn) are convergent
sequences (limy, oo T, = x, lim, oo Yy = y), ¢ € R.

Then, sequences (cxy), (Tn + Yn), (Tn - Yn) are convergent, and:

o lim, ,cx, =cx Choose |z, — x| < ¢€/|c|.

o lim, ,oo(xy +yn) =x+y  Choose |z, — x| <€/2¥Vn > Ny, |y, —y| < €/2 ¥n > Ns.

o lim, ,oo(zy - yn) =2y  IM >0 s.t. |z, |yn] < M V. |z,y, — 2y| < |znl|lyn — y| + |yl|lz, — 2|

Theorem 5 (Preserve monotonicity). If (z,), (yn) are convergent and x, <y, Vn €N, then:

lim x, < lim y,
n—oo n—oo

Proof. By defintion, Ve > 0 : N, Ny > 0 s.t. |z, — x| < €/2 Vn > Ny and |y, —y| <€¢/2 VYn > N,.
Thus, y —€/2 <y, <y +¢€/2.
Choose N = max(Nj, N3). Then, we have ¥n > N:

€ € €
x:xn+m—xn<yn+§<y+§+§:y+e Ve >0

ie. x <.

[]

Theorem 6 (Squeeze theorem™). Let (z,), (y,) be the convergent sequences with the same limit L. If a

sequence (zy,) is such that

Tn <2, <y, VneN

then (z,) also converges to L.
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2.2 limsup, liminf

Theorem 7. Given a sequence (x,). Then:

y = lim sup =z,
n—oo

iff y € [—o00, 00| satisfies one of the following:
(1) y € (—00,00): Ve >0

(a) AN e N s.t. x, <y+e VYn>N
(b)) VN €eN:In> N s.t. z, >y —¢
(2) y=o00: VM € R:3In € N s.t. x, > M, i.e. (x,) is not bounded from above
(3) y=—oc0: Vm e R:3IN e N s.t. z, <m Vn> N, ie x, - —00 asn — o0
Stmilarly:
zzlimniggoa:n
iff z € [—o0, 00| satisfies one of the following:
(1) z € (—00,00): Ve >0
(a) ANEeN:z,>2z—¢ Vn>N
(b)) VYN eN:In>N st z,<z+e
(2) xt=00: YM €R:IN €N s.t. z, >M Vn >N, i.e. , = 00 asn — 0o
(3) x =—oc0: Ym € R:3dn €N s.t. x, <m, i.e. (x,) is not bounded from below
Theorem 8.

lim z,, =z < limsupz, = liminfz, =«
n—oo

Proof. ‘For «: Given limsup x,, = liminf z,, = x.

Note that lim,, o, sup{zy : k > n} = x decreases and lim,,_,, inf{x) : £ > n} = = increases as n — oc.
Let z, = inf{xy : k > n}, which is monotone increasing and bounded above. Let y,, = sup{xy : k > n}.

Then, we have: v —e< 2, <z, <y, <x+e Ve>D0.

For =: Given limzx,, = x‘

By definition, Ve > 0: 3N >0 s.t. |z, —x| <¢ ez —e<z,<x+€ Vn>N.

Then, we have: z —e < 2z, <z, <y, < x+e€. Thus, limz, =limy, =2 =limsupz, = liminfz,,. [
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Corollary 3.

lim z, =z < limsup |z, —z| =0
n—oo

Key: liminfz, <limsupz,.

Proof. Note that lim,, . =, = z < lim,_, |z, — 2| = 0 = limsup |z,, — z|.

Conversely, if limsup |z,, — z| = 0, we have:
0 < liminf |z, — 2| <limsup |z, — 2| =0
i.e. liminf |z, — 2| = limsup |z,, — | = 0 and thus limz,, = . O
Problem: Prove liminfz, = —limsup(—=x,) for any sequence (x,,).
Proof. Let xy = inf{x, : n > N} = —sup{—=z,, : n > N}. Then, we have:

lim xy = liminfx, = — limsup(—=z,)
N—o0

2.3 Monotone sequences™

Theorem 9. A monotone sequence converges iff it is bounded.
o [f (x,) is monotone increasing, bounded, then lim, ., =, = sup{x, : n € N}.

e [f (x,) is monotone decreasing, bounded, then lim,_, x, = inf{z, : n € N}.

2.4 Cauchy

Definition 4 (Cauchy sequence). Given (x,), we say (x,) is a Cauchy sequence if Ye > 0 : IN > 0 s.t.

Vn,m > N we have |x, — x| <.

Theorem 10. (z,,) converges < x,, is a Cauchy sequence.

Proof. ‘For =: Given lim,,_ o T, = . ‘ By definition, Ve > 0:3IN > 0 s.t. |z, — x| <€/2 ¥n > N.
Then, we have Vn,m > N:

T — T = |2n — T+ T — 2| < |xp — 2|+ | — 20| <€/24€/2=¢

For <: Given (z,) is Cauchy.
Choose € = 1. Then, IN; > 0 s.t. Vn,m > Ny: |z, — x| < 1.
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Thus, if m > Ny:

‘xm‘ = ’l’m — TNy+1 T xN1+1’ < |.Z'm - ‘TN1+1| + ’$N1+1| <1+ "/I’.Nl+1’

i.e. (x,) is bounded. Thus, its limsup and liminf exist and are finite.

Let limsup,,_, ., ©, = a, and we prove lim,,_, z, = a.

(1) By property of limsup, Ve > 0: 3N, > 0s.t. x, <a+¢e/2 Vn> N,
(2) By definition of Cauchy sequence, Ve > 0: IN’' > 0 s.t. |z, —x,,| <€¢/2 Yn,m > N
(3) By property of limsup again, Ve > 0 : In* > max(N., N') s.t. z,- > a —¢/2

Combining (1) and (3), we have: |z, —a| <¢/2 ¥n* > max(N., N)
Combining (2) and above, we have: |z, —a| = |v,— 2 +xp—a| < |2, — 20|+ |10 — a] < €/24€/2 =€

Thus, lim,, .o, z, = a by defintion. O

Problem: [Exercise 10.6]

(a) Let (s,) be a sequence s.t. |s,41 — s, < 5= Vn € N. Prove (s,) is Cauchy.

Proof. Choose m >n > N > 0:

1 1

1
|5n _Sml S ’3n_5n+1‘ + ‘5n+1 _5n+2| + -+ |Sm71 _Sml S 2_n + 2n+1 + -+ 2m—1

for large enough N >> 1. O

b) Does it hold if |s,.1 — s,| < 1 Vn € N?
( + "

Solution: No. Consider s, = 22:1% — o0 as n — oo. Thus, the sequence (s,) is not bounded

1

from above, and (s,) cannot be Cauchy. However, 5,1 — s, = - o

< % is satisfied.
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2.5 Subsequences

Proposition 2. Every subsequence of a a convergent sequence converges to the limit of the sequence.

Proof. Given a sequence (z,) and lim,_,, =, = z. Fix ¢ > 0.
By definition, there exists N > 0 s.t. |z, —z| <€ Vn > N.
Observe a subsequence (z,, ). Pick K > 0 such that n, > N for £ > K. Then:

|z, — 2| <€ VE>K

and (z,,) converges to .

2.6 B-W theorem

Theorem 11 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subse-

quence.
Key: Every bounded sequence must have a monotonic subsequence.

Proof. We construct a subsequence converging to y = limsup z,.
Ve > 0:

(a) AN e Ns.t. 2, <y +e.
(b) VN € N:3In > N st. x, >y+e.
e Choose ¢; = % Then ANy s.t. x, <y+e Vn > N. Also, there exists ny s.t. z,, >y — €.
So, |Tn, — y| < €.

e Choose €5 = 2% Then AN, s.t. z, < y+ € Vn > N. Also, there exists ny > max(Ny, Ny) s.t.

Ty > Y — €9.

So, |zn, — Y| < €.

e Iteratively, for ¢, = 2% : 3N st x, <y+e Yn > N. Also, In, > max(Ny, Ng_1) s.t. x,, > y— €.

Thus, |z,, —y| < €.

Therefore, z,, — y and (x,,) converges. O

10



Chapter 3
Series

”Series is infinite sum of real numbers”

Definition 5 (Series). Given a sequence (a,). The series Y .- a, converges to a sum S € R if the

sequence (Sy,) of partial sums S, =Y ,_, ax converges to S as n — oco. Otherwise, the series diverges.
Key: > a, converges implies lim a,, = 0.

Theorem 12 (Cauchy condition for series). The series Y -, a, converges iff Ve > 0 : IN € N s.t. the

tail of the series can be arbitrarily small:

n

Z lag| <€ Vn>m >N
k=m+1

Proof. The series converges iff the sequence of partial sums (S,,) is Cauchy:

n

Ve>0:3dN € Ns.t. |S, —Sn| = Z lag| <€ Vn>m >N

k=m+1
O
Corollary 4. If the series 210;1 a, converges, then lim,_, a, = 0.
Proof. 1f the series converges, then it is Cauchy. Choose m =n — 1:
|Sp — Sn-1| =lan] <€ Ve>0n>n—-1>N
O

Definition 6 (Absolute convergence). The series y | a, converges absolutely if Y~ |a,| converges.

Key: Absolute convergence implies convergence.

11
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3.1 Three tests

Theorem 13 (Comparison test). Suppose that b, > 0 and Y | b, converges. If |a,| < by, then Y~ a,

converges.
Proof. Since Y b, converges, it satisfies the Cauchy condition. Since:
n n
2 lul< > b
k=m-+1 k=m+1
the series ) |a,| also satisfies the Cauchy condition. Therefore ) a,, converges too.
Theorem 14 (Ratio test). Given a sequence (ay).

An41
an

e [t converges absolutely if limsup,,_, < 1.

> 1.

o It diverges if liminf, , |

Theorem 15 (Root test). Given a sequence (a,) and r = limsup,,_,. |a,|"/™.

Then Y > | a, converges absolutely if 0 < r <1 and diverges if 1 < r < co.

Theorem 16 (Ratio implies Root). Given a sequence (ay,).

An 41
n

e [flimsup, . < 1, then limsup, . |a,|"™ < 1.

Gn+1

n

> 1, then limsup,, .. |a,|"/" > 1.

o [flimsup,, .

12



Chapter 4
Limit of a function

Boundedness of a function with a limit. f: A — R, ais an accumulation point of A, lim,_,, f(z) =
f(a). Then 36 > 0 and K > 0 s.t. if |x — a| < 6 then |g(z)| < K.

Definition 7 (Accumulation point). Given a set A. Then c is called an accumulation point of A if for

any § > 0, there ezists a # ¢ s.t. |a—c| <0 and a € A.

Definition 8 (Limit of a function). Let f : A — R, where A C R, and suppose that ¢ € R is an

accumulation point of A. Then:

limf(z)=LeVe>0: 30 >0 st iflx —c| <d,x € Athen |f(x)— L| <e (4.1)

T—C

4.0.1 Classes of sets

Definition 9 (Open set). A set A C R is open, if for any point a € A, there exists an interval satisfying
a € (b,c) and (b,c) C A.

Proposition 3. A is open set iff for any a € A, there exists 6 > 0 s.t. for any point ¢ satisfying d(a,c) < 6,

we have c € A.

Definition 10 (Interior point). Given a set A C R, a € A is called interior point of A if there ezists an
interval satisfying a € (b, c) and (b,c) € A.

Definition 11 (Accumulation point). Given a set A C R, a € A is called an accumulation point of A if

for any interval satisfying a € (b, c), we always have (b,c) N A\{a} # @.
Proposition 4. Given a set A

e a is an interior point of A iff there exists € > 0 s.t. for any point c satisfying d(a,c) < €, we have

ce A.

e a is an accumulation point of A iff for any € > 0, there exists a point ¢ s.t. d(a,c) <€, ¢ € A, and

c#a.

13
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Chapter 5
Continuous function

Definition 12 (Continuous function). f: A - R, A C R c € A.
f is continuous at ¢ if Ve > 0: 36 > 0 s.t. if [v —c| < then |f(x) — f(c)] <e.

Alternatively, f is continuous at ¢ if lim, . f(x) = f(c).

5.1 Uniform continuity

Definition 13. f: A — R, f is uniformly continuous function in A if Ve > 0 : 30 > 0 s.t. forxz,y € A
if |x —y| < 0 then |f(x) — f(y)] <e.

Key: Continuous function on a closed, bounded (compact) set is uniform continuous!

Proposition 5. f is not uniform continuous < Jeg > 0 and two sequences (x,), (y,) .1

lim |z, —yn| =0 but | f(z,) — f(yn)| > €0 Vn

n—o0

Definition 14 (Lipschitz function). f is L-Lipschitz if
Va,y | f(x) = fy) < L[z -y
Then f is uniform continuous.

Problem: [Mid-Term-1] Let f(z), g(z) be continuous functions on [0, 1] s.t. f(0) < ¢(0) and f(1) > g(1).
Let
E ={zlz €[0,1], f(z) < g(z)}

(a) Prove sup E < 1. Key: By continuity, there exists § > 0 s.t. Vo € [1 —6,1] : f(x) > g(1).

(b) Prove f(sup E) = g(sup F).

14
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Theorem 17 (Compact means sequentially compact). A set A is compact (bounded and closed) if and
only if A is sequentially compact, meaning that for any sequences (x,) of A, there exists a subsequence

(xn,) such that x,, converges to some point a € A.

Proof.
Pick any (z,) C A. Since A is bounded, (z,) is a bounded sequence.
By Bolzano-Weierstrass theorem, there must exist a convergent subsequence (x,, ). Let limy_ x,, = a.
We show that a € A. (Proof by contradiction.)
Assume a € A°. Since A°is open, Je* > 0s.t. (a—€",a+€") € A (a—€,a+€)NA=02.
Then, (a — €*,a+ ¢*) N {x,,} = @ and |z,, — a| > €*. Contradiction.
We are given a sequentially compact set A. (Proof by contradiction.)
Assume A is not compact. Then A is either unbounded or open.
Assume A is unbounded. Then, we can construct a sequence (x,) in A that diverges (z, — oo as
n — 00), meaning it has no convergent subsequence. Contradiction.
Now, assume A is open. Then, there exist a sequence (x,) in A s.t. it converges a point a € A°.
Thus, every subsequence (z,, ) of this sequence also converges to a.
However, every sequence in A has a convergent subsequence with its limit in A. Contradiction.

Therefore, A must be bounded and closed, meaning it is compact. O]
Theorem 18. If K C R is compact and f : K — R is continuous, then f(K) is compact.

Theorem 19 (Theorem 4.4). If f : K — R is continuous and K C R is compact, then f is uniformly

continuous on K.

Proof. Suppose for contradiction that f is not uniformly continuous on K. Then, by reverse definition of

uniform continuity, there exists ey > 0 and sequences (z,,), (y,) in K such that

lim |z, —y,| =0 and |f(zn)— f(yn)| > € for every n € N.

n—oo

Since K is compact, there is a convergent subsequence (z,,) of (x,) such that lim; oz, = € K.

Moreover, since (x, — y,) — 0 as n — oo, it follows that

i—00 i—00 i—00

1—00

s0 (yy,) also converges to x. Then, since f is continuous on K,

1—00

> €o. ]

but this contradicts the non-uniform continuity condition |f(z,,) — f(Yn,)

15
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Theorem 20 (Weierstrass extreme value theorem). If f : A — R is continuous and A C R is compact,

then f is bounded on A and f attains its mazximum and minimum values on A.

16
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5.2 Intermediate value theorem

Lemma 1 (Intermediate value). Given a continuous function f : [a,b] — R. If f(a) <0 and f(b) >0, or
f(a) >0 and f(b) <0, then there exists ¢ € (a,b) s.t. f(c) =0.

Proof. Assume f(a) < 0 and f(b) > 0.
Let E = {x € [a,b] : f(z) < 0}.
Then, a € E and FE is a nonempty set bounded above by b. By completeness axiom, sup E exists.
Let ¢ = sup E. We show that f(c) = 0.
By definition of continuity, Ve > 0: 3§ > 0 s.t. if |z — ¢| < 0 then:

|f(e)]
2

[f(z) = flo)] <e=

(Proof by contradiction.)
Assume f(c) < 0:|c#b. For all z € [a,b] s.t. | — | < 0:

f(@) = £0) + F) — (0) < 1) - 1D = 1D g

i.e. z € E for any « € [c—d,c+ ] N[a,b]. Since ¢ < b, there is 2* = c+ 6 € E s.t. * > ¢. Contradiction.
(Note that we use denseness of @ here to show ¢ < ¢+ 0 < b exists.)

Assume f(c) > 0:|c # a. For all x € [a,b] s.t. |z — | < 0:

F@) = £0) + F@) - £(0) < £+ LD 5 0

i.e. ¢ € E for any x € [c — d,c+ ] N [a,b]. Then, Vx € [¢c —d,c]: f(z) >0and x &€ E.

Thus, e <c—06 Ve€ E,ie. c¢— 4 is alower upper bound than c¢. Contradiction.

17



Chapter 6

Differentiable function

6.1 Derivative

Definition 15. f: (a,b) = R, c € (a,b).
We say f is differentiable at point c if f'(c) = limy,_0 w = lim,_,. f(m;:ic(c) exists.

f'(c) exists < f'(ct) = f'(c7)

6.1.1 Properties

Theorem 21 (Continuity). If f is differentiable at ¢, then f is continuous at c.
Proof.

lim f(x) = f(c) = lim f(c+h) = f(c) = lim fleth) = /()

T—c h—0 h

ch=f'(c)-0=0

Theorem 22 (Algebraic property). f, g are differentiable at c.
1. (f£9)(c) = f(c) £4(c)

2. (f-g)(c) = f(c)gle) + f(c)g'(c) Key: limy_ [f(c+h)—f(c)}g(c+h}2—f(c)[g(c+h)—g(c)]

3. if g(e) # 0: (£y(e) = HI LA

Theorem 23 (Chain rule). f, g, g is differentiable at ¢, f differentiable at g(c). Then, fog is differentiable
at ¢, where (f(g(c)))" = f'(g(c)) - ¢'.
Proof.

o flgleth) = flg(e) _
h—0 h h—0  g(c+h)—g(c) h

18
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6.2 Mean value theorem
Proposition 6. If xq is the max or min point on (a,b), then f'(xy) = 0.

Proof.

Theorem 24 (Rolle). f is continuous on [a,b], differentiable on (a,b).
Given f(a) = f(b).
Je € (a,b) : f'(c) =0

Proof. Since f is a continuous function on a closed interval [a,b], f attains its max/min values on |[a, b]
(Weierstrass extreme value theorem).

If a,b are max/min, pick ¢ to be min/max. Else, if a,b are not max/min, pick ¢ to be max. ]

Theorem 25 (Mean value). f is continuous on [a,b], differentiable on (a,b).

f(b) = f(a)

Je € (a,b) : f'(c) = -

Proof. Define g(x) = f(z) — f(a) — [f(b)_ (“)} (x — a), which is also cont. on [a, b], diff. on (a,b):

b—a
b) — f(a
g = [ - 1O
where g(a) =0 = g(b). By Rolle’s theorem, 3¢ € (a,b) : ¢'(c) = 0. O

Corollary 5. f: (a,b) — R is differentiable on (a,b), f'(x) =0 for all x € (a,b). Then f is constant on
(a,b).

Key: fix 2o € (a,b). By MVT, Vz € (a,b) s.t.  # xo : 3¢ between z and zg s.t. f'(c) = &= .— ¢,

T—x0

Corollary 6. f, g: (a,b) — R is differentiable on (a,b), f'(z) = ¢ (x) Vz € (a,b).
Then, f(z) = g(x) + C for some constant C'.

Key: (f —g)(x) =0 Vx € (a,b). Then, f — g is a constant function on (a,b).

Corollary 7. f: (a,b) — R is differentiable on (a,b). f is increasing on (a,b) iff f'(z) >0 Vx € (a,b).
Proof. =: given f is increasing, consider any = € (a,b): f'(x) = limj_,o w > 0.

«: given f' > 0, consider a < z < y < b. By MVT, 3¢ € (z,y) : f'(c) = W=t@) > o je.

y—x

fy) = f(). N
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6.3 Inverse function theorem

Proposition 7. f: A — R is one-to-one on A C R. Assume its inverse f~1: B — R exists.
Assume f is differentiable at c € A, f~1 is differentiable at f(c) € B
Then, given f'(c) # 0, we have:

1
F (f(e) = 6.1
FYGE) = 5 (6.1)
Proof. By definition, f~1(f(z)) = x. Take derivative on both sides and apply chain rule. O

Theorem 26 (Inverse function). f: A — R, ¢ is an interior point, f'(x) is continuous on A.
If f'(c) # 0, then one can find § > 0 s.t.

(1) f is one-to-one on (¢ — d,c+ ) = ! exists on (¢ — §,c+9)

(2) =1 is differentiable on f((c —d6,c+6)) = (f71)(f(c)) = f/;(c)

Proof. WLOG assume f’(c¢) > 0. Then, since f" is continuous, f'(z) > 0 for x € (¢ — d,c+9), i.e. fis
increasing, one-to-one on x € (¢ — d, ¢+ 9).

We prove that f~! is continuous on a € f((c — 6, ¢+ §)) by showing lim,,, f~'(y) = f~!(a).

Ve >0:30 = min{a — f(fa) =€), f(fHa) +¢€) —a} s.t. if [y —a| <d then [f1(y) — f1(a)| < e

Consider:
B e ) R () N e U I e O D i (R 0 R e N S S
P y—a i n w0 U {at b)) — J( (@) = f@) — 1) J(©)
(6.2)
O
6.4 L’Hospital’s rule
Theorem 27 (Cauchy mean value). f, g are continuous on [a,b], differentiable on (a,b).
Jee (a,0): f'(c)[9(b) —gla)] = g'(c) - [f(b) — f(a)]
Proof. Define h(z) = [f(z) — f(a)][g(b) — g(a)] = [f(b) — f(a)][g(z) — g(a)], where h(a) = 0 = h(b).
By Rolle, 3¢ € (a,b) : h'(z) = 0. O

Theorem 28 (L'Hospital’s rule). f, g : (a,b) — R are differentiable on (a,b), where ¢'(x) # 0 VY € (a,b)
().

and lim,_ .+ f(z) =0 = lim, .+ g(z

TGO O T () R
r—at g’(l‘) r—at CL’)
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Proof. Extend to f,g : [a,b) — R by setting up f(a) = g(a) =
Fix z € (a,b). By MVT, 3¢ € (a, ) s.t. ¢'(c) = £&= 9<a>,

r—a

Note that g(x) = g(z) — g(a) = ¢'(¢) - (x — a) y given conditions, so g(z) #0 Vz € (a,b).

a
By Cauchy MVT, dc € (a,b) s.t. J;Ec)) - Emg a))

(( f Ez; is well-defined. As x — a™, ¢ — a™. O

6.5 Taylor’s theorem

Definition 16 (Taylor series). f: A = R, ¢ € (a,b). f has n-th order derivative.

Then, the n-th order Taylor series expansion is:

f0)
2!

Pu(e) = F( + 1(0) (r— )+ 1D (@t

Problem: If f(x) is a polynomial of degree n, then f(x) = P,(z).

Theorem 29 (Taylor with Largrange Remainder). f: A — R, ¢ € (a,b). f is (n+1)-th order differentiable

n (a,b). For every a < x < b, there exists &, . between x and c s.t.

(nt1)
Rute) = fia) = Pofo) = 8o o
where &, . is between x and c.
Proof. z, c are fixed. Goal: find ¢, .
Define g(t) = f(x) — f(t) = f/(t) - (x —t) = L0 (@ — )2 — ... = L2O L (z — ) Then, we have:
g(x) =0
9(c) = f(z) = Pa(x)
f(g) (t) 2 "
g == = f') - (@ =)+ f(t) = == (@ = )"+ ['(t) - (x = 1) =
n+1
_ SO gy

Define h(t) = g(t) — (“"‘”—’lt)mrl - g(c). Then, we have:

r—cC

By MVT, there exist some &, . s.t. h/(§z.) =0

W (Ene) = o (Eee) + (4 1) 2T
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Thus, we have:
N e

A ()

n!

’ (l’ - ém,c)n

Therefore, we have:

FU D (o)

(n+1)! e

g(c) =

(r—c

22



Chapter 7

Sequences and series of functions

7.1 Uniform convergence

Definition 17 (Pointwise convergence). We say f.(z) — f pointwisely if lim, . f.(z) = f(z) Vz
eVre AVe>0: IN., >0 st |fulzx) — f(z)] <e VYn> N,
Definition 18 (Uniform convergence). We say f,(z) — f(x) uniformly if Ve > 0 IN,. > 0 s.t.
|fu(z) — f(z)] <€ VYn> N,Vz
Definition 19 (Cauchy condition for uniform convergence). We say (f.(z)) is uniformly Cauchy if Ve > 0
AN, > 0 s.t. |fu(z) = f(2)] <€ Vn,m > N, Vzx

Theorem 30. Uniform convergence < uniform Cauchy.

Proof. = |fu(z) = fm(2)| < [ful(z) = f(2)| + |f(2) = fm(2)| <€
<: Fix z. Note that (f,(x)) is a Cauchy sequence, i.e. (f,(z)) is a convergent sequence.
Let lim,, o frn(z) = f(x). Then, we have:

[ful@) = f2)] < [fu(2) = fn (@) + [fm(2) = f(2)] <€+0 Vn>N,m — oo

O
Theorem 31. {f,(x)}, fu(x) : A — R each of f, is bounded. If f, — f uniformly, then f is also a

bounded function.

Proof. Key: show |f(x)| is bounded, independent of x.

lf(@)] < |f(x) = fu@)| + |fulz)| <1+ M Vz
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Choose € = 1. Since f,, — f uniformly, there exists N > 0 s.t. |f,(z) — f(z)] <1 Vn > N,Vz.
Choose n = N + 1. Note that fy; is bounded, i.e. |fyi1| < M V. O

Theorem 32. {f,(x)}, fu(x) : A — R each of f, is continuous. If f, — [ uniformly, then f is also a

continuous function.
Proof. Key: show lim,_,. f(z) = f(c).

2¢ €

(@) = fle)l < [f(2) = fal@)l + [ ful@) = fal)] + | fale) = flO)] < 5 + 3

Since f,, — f uniformly, Ve > 0 there exists N > 0 s.t. |f.(z) — f(z)] <€/3 Vn > N,Vz.
Choose n = N +1: since fxy4 is a continuous function, Ve > 0: 3oyt s.t. |fyvr1(x) — fvsa(c)| <e€/3
if |2 — ¢| < Ong1e O

Theorem 33. {f.(z)}, fu(z) : A — R each of f, is differentiable. Assume f, — f pointwisely, f, — ¢
uniformly. Then, [ is also differentiable and f' = g.

Proof. Key: show f'(¢) = lim,_,. fu):f(“) = g(c).

| |@) =100

T —cC

— Q)|+ 1fn(e) = g(c)]

Tr—cC Tr —cC Tr —cC

’f(x)—f(C)

_g(c)‘ < ‘f(:v) — () fale) = fulo)

(1) Note that we can choose arbitrary m — oo so that first term goes to 0:

+ fm(x) — fm<c) . fn(x) — fn(c)

r—=cC r—=cC

‘f - fle) _ fulx) = ful

Tr—cC

'f = f(©) _ fm(x) = fm(c)

Tr—cC

By MVT for the second term, there is some & between = and c¢s.t. (f,—f.) (§) = f’”_f")(x) (fm_f")(c).

Since f! — g uniformly, (f/(z)) is uniformly Cauchy: Ve > 0 : IN s.t.

Vn,m > Ny: |fi(x)— fl(2x)] <e€/3 Vx

n

(2) Choose sufﬁciently large n > max(Ny, Ny) Since f, is differentiable, 30 > 0 s.t. if |x — ¢| < 0 then
fn(x) fn — f(c)| < ¢/3.

(3) f!'— g uniformly, then Ve > 0: 3N, > 0 s.t. |f/(z) — g(z)| < €/3 Vn > Ny, V.

24



MATH 104: Intro to Analysis Midterm 1, 2, Final Spring 2025

7.2 Series of functions

Definition 20. {f,(x)}, fu(z) : A = R.
We say that > " | fu(x) converges pointwisely if lim,,_oo Sy () = limy, o0 Y oy fu(x) converges point-

wisely.

Theorem 34. {f,(z)}, fu(z): A > R.

> fulw)

k=m+1

Z fu(z) converges uniformly < VYe>0: AN >0 s.t. <e VYn>m> N,Vx
n=1

Proof. =: Note that (5,(x)) ia a uniform Cauchy sequence. Then, (S,,) converges.
Fix . Apply Cauchy condition for series: S, (x) — Sp(x). ]

Theorem 35 (Comparison test). {f.(x)}, fu(z) : A = R.
If we can find {M,} s.t. M, >0,> > M, < oo and|f,(x)| < M, Vn,Vz, thend >, f.(x) converges

uniformly.

Proof. Because > M,, < oo converges, Ve > 0: 3N > 0 s.t. we have

Z fr()

k=m+1

< Z | fe(x)| < Z My<e Yn>m>N

k=m+1 k=m+1
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7.3 Power series

where ¢ € R, {a,} CR.

There always exists radius of convergence R, radius of uniform convergence 0 < p < R.

Proposition 8. If >  a,z{ converges for some xz,, € R, where |zo| > 0, then Y~ a,z" converges for

any [x] < |-

Proof. Since Zf;l a,xy converges, lim, . a,xf = 0, i.e. a sequence (a,z{) is bounded.
aM > 0 s.t. |axp] <M Vn.

n
|anz”| = |anzy - ()" < M - — 0 as n — oo. O

Z
T

Theorem 36. Define f,(z) = a,(x — ¢)". Then, we can find R > 0 s.t.
(1) if |z| < R, >_0", |fu(2)| converges, if || > R, >~ 7, fu(z) diverges.
(2) if |z| < p, D07, falz) converges uniformly.

Proof. (1) Define R = sup{|z|: > -, a,z"}.

Let 0 < R < co. By definition of sup, Jzy s.t. |z| < |zo| < R and )~ a,z{ converges. When

|z| > R, because R is the upper bound, we must have |z| € {|z| : > °7 | a,z™ converges}.

n=1

Let R=0. > a,z{ diverge always.

Let R = oco. Jzg s.t. |zo| > |z| always, i.e. always converges.

(2) Given p < R, since R is sup, Jzg s.t. p < |zo| < R and ) a,xy converges. Then, lim,, o apxj =0
and 3M > 0 s.t. |anx6‘| <M Vn.

n n
|an”| = |anzy - ()" < M- || =M-|£] —0asn—o00,V|z| <p,ie. independent of z.
[
Theorem 37. (1) R = lim, . ’a‘jﬁ‘ if limit exists.
_ 1
(2) R= limsup,,_, o |an |/ "
Proof. (1) According to ratio test, converges if lim % = lim | =) - 2] < 1.
(2) According to root test, converges if lim sup {/a,|z|* = limsup {/a, - |z| < 1
[

Proposition 9. >~  a,z" has the same convergent radius R as (its derivative) a; + Y - (n+1)ap412™.
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Proof. Note that limsup always exists.

1 1 1
R = — = = =
limsup /a, limsup {/na, limsup "/ (n+ 1)a,

Theorem 38. f(z) is infinite-differentiable on (—R, R).

Proposition 10. R, S > 0, functions f(x) = > °

o apa” in |z < R,
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Chapter 8

Integrable functions

8.1 Supremum and infimum of functions

Proposition 11. If f,g: A — R are bounded functions, then:

el B
inf f 1gfg‘_81jp!f gl (8.1)

sup f — Supg‘ <sup|f —gl,
A A A

Proof. sup f < sup(f —g)+supg <sup|f —g| +supg. Use sup(—f) = —inf f. O

8.2 Riemann integrable

Definition 21 (Upper and lower Riemann sum).
U(f; P)= Z sup [ (zp —xp—1) and U(f)= iI;fU(f;P)

1 [Tr—1,7k]

(8.2)

n

L(f;P)=>_ inf f-(zy—axp) and L(f):s%pL(f;P)

1 [Tr—1,2k]

Definition 22. A function f : [a,b] — R is Riemann integrable on [a,b] if it is bounded and U(f) = L(f).

Definition 23. A partition Q = {J1,...,JJn} is a refinement of a partition P = {I,...,I,} if every

interval Iy in P is an almost disjoint union of one or more intervals J, in Q (m > n).

Theorem 39. Let [ : [a,b] — R be bounded, P be a partition on [a,b], Q be a refinement of P. Then

U(f;Q) <U(f;P), L(f;P) < L(f;Q) (8.3)

Proposition 12. If f : [a,b] — R is bounded and P,Q are partitions of [a,b], then L(f; P) < U(f,Q).

Proof. Let R be a common refinement of P and Q). Then: L(f; P) < L(f,R) <U(f,R) < U(f,Q). O
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Proposition 13. If f : [a,b] — R is bounded, then L(f) < U(f).

Proof. Consider A ={L(f;P): Pell}, B={U(f;P): P ell}.
From previous proposition, L < U VL € A,U € B. Thus, L(f) =sup A < inf B = U(f). ]
8.3 Cauchy condition for integrability

Theorem 40. A bounded function f : [a,b] — R is Riemann integrable iff for every e > 0 there exists a
parition P of [a,b] (may depend on €) s.t.

U(f;P) = L(f; P) <e (8.4)

Proof. «<: Given that Cauchy condition holds for ¢ > 0 and a partition P.
Note that U(f) < U(f; P), L(f) > L(f; P). Then, we have:

0<U(f) = L(f) SU(f; P) = L(f; P) <¢

so U(f) = L(f), and f is Riemann integrable by definition.
=: Given that f is integrable. Let ¢ > 0. Then, there exist partitions @, R s.t.

€

U(f:Q) < U+ 5. LUR) > L(f) —

Let P be a common refinement of () and R. Then:

U(f; P) = L(f; P) SU(f;Q) — L(f; R) SU(f) — L(f) + ¢

where U(f) = L(f) by definition. O

8.4 Continuous, monotonic functions

Theorem 41. A continuous function f : [a,b] — R on a compact interval is Riemann integrable.

Proof. A contitnuous function on a compact set is bounded and uniformly continuous.

Thus, V> 0:36 > 0s.t. [f(z) — f(y)| < 35 Va,y € [a,b] satisfying |z — y| < 0.
Choose a partition P = {Iy,..., I, } s.t. || <d Vi.

A function attains its max value M) at x; and min value m, at y; in compact interval I,. Since

|z) — yr| < 0, we have M, —my, < 3%

n n

UfP) = L(fi P) = D Milll = Y mill = Y (M= mi)l ] < == || < e
k=1 k=1

k=1 k=1
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O
Theorem 42. A monotonic function f : [a,b] — R on a compact interval is Riemann integrable.
Proof. Let f be monotonic increasing: f(x) < f(y) Vz <uy.
Choose a partition P, = {I1,...,I,} of n subintervals I = [zy,,zx] of [a,b], each of length =2 with
endpoints
k
rp=a+(b—-a)— k=0,1,2,...,n
n
Since f is increasing, My = sup; [ = f(xy), mp = infy [ = f(zp_1).
= b—a b—a
U(f3 P) = LUUs Pa) = Y (My = ) (g = ) = —— D [f() = f(an-a)] = ——[F(b) = f(a)
k=1 k=1
which goes to 0 as n — oc. O
8.5 Properties
Theorem 43. Given f, g: [a,b] — R are Riemann integrable.
(1) fg is Riemann integrable
(2) % is Riemann integrable ifﬁ is bounded
Proof. (1) Since f, g are Riemann integrable, IM > 0 s.t. |f], |g| < M.
Pick Vz,y € A = [ty—1, t]:
f(@)g(@)=f(y)g(x) + fy)g(x) = fy)gly) < M(|f(=) = fFW)l + l9(z) — g9¥)])
< M((sup f —inf f) + (supg — inf g))
Note that |f(z) — f(y)] <sup f —inf f Vz,y.
Then, we have:
Since f, g are Riemann integrable, Ve > 0: dR s.t.
€
_ I < =
UG R) = LU ) < 5o
€
.y < =
[
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8.5.1 Linearity, monotonicity, additivity

Theorem 44 (Linearity). f : [a,b] — R is integrable and ¢ € R, then cf is integrable and

[

Proof. Observe ¢ > 0. Observe — f, where sup(—f) = —inf(f). Then, observe ¢ < 0 where ¢ = —|¢|. O

Theorem 45 (Monotonicity). f, ¢ : [a,b] — R are Riemann integrable and f < g x € |a,b]. Then

b b
/ f= / g
Proof. Define h(z) = g(z) — f(x) > 0, which is also Riemann integrable by linearity.
Then, we have infy, ;10 > 0. So, L(f,P) >0 VP.

By definition, f;h = supp L(h, P) > 0, so fabg - f;f = f: h > 0. O
Theorem 46 (Monotonicity). If f : [a,b] — R is Riemann integrable, then |f| is also Riemann integrable
and

b b
[ #wyis| < [15@las
Proof.

|f(@)| = 1f(y)] < Sipf—igff Vo,ye A

U(lfl, P) = L(f[, P) < U(f, P) = L(f, P) VP

s g [

ie. =b<a<b=la| <D O

By definition, we have:

Theorem 47 (Additivity). Choose ¢ € (a,b).

f is Riemann integrable on [a,b] < f is Riemann integrable on [a,c| and [c,b], where

/acfd:v+/cbfdx:/abfdx

Proof. =: Given f is integrable on [a,b]. Thus, Ve > 0: 3P s.t. U(f; P) — L(f; P) <e.
Let P = PU{c}, and split P’ = Q U R into partitions @ of [a,c] and R of [c, b].

U(f; P)=U(f;Q)+U(f; R) and L(f; P') = L(f; Q) + L(f; R)
U(f;Q) = L(f;Q)=U(f; P') = L(f; P') = [U(f; R) — L(f; R)] < U(f; P) = L(f; P) < ¢
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<: Given f is integrable on [a, ] and [c,b]. Let P = Q U R.

U(f;Q) — L(f;Q) < % and U(f; R) — L(f; R) <§
U(f;P) = L(f; P) = [U(f;Q) + U(f; R)] = [L(f;Q) + L(f; R)] < ¢
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8.6 Fundamental theorem of calculus

Theorem 48 (Fundamental theorem of calculus).
Version 1. F(x) : [a,b] — R differentiable, f(x) = F'(x) integrable, then fff(x)d:c = F(b) — F(a).
Version 2. f(x) : [a,b] — R integrable, define F(x) = [ f(t)dt. Then:

1. F(x) is a continuous function on [a,b]

2. if f(x) is continuous at ¢ € [a,b], then F'(c) = f(c)

Proof. (Version 1.) Let P = {a = xo, 21, ..., %, = b}. Then, F(b) — F(a) =Y ;_,[F(zx) — F(xx_1)].
By MVT, 3¢ € (xg_1,xx) s.t. F(xg) — F(xg_1) = f(c)(xx — Tp—1):

L(f; P) = my(x — wp) < Fag) = Fzp) < My — 2p0) = U(f; P)

where f is Riemann integrable, i.e. U(f) = L(f), and thus F(zy) — F(xx—1) = [*  f(z)dx. O

Tr—1

Proof. (Version 2.)

(1) Key: derive Lipschitz! Since f is Riemann integrable, it is bounded. Let |f(t)| < M Vt.

|F(y) = F(x)| =

/myf(t)dt‘f [ 1 < / Mit=Me-y) Ve<y  ($9)

so F'is continuous.

(2) Given c € [a,b]. Define

Flet =P _1 (™

Then, we have:

F(C_l_h})L_F(C)—f(C):%/CC f(t)dt—% CLf

=3 [l -s@la 50

c

Since f is continuous at ¢, Ve > 0: 35 > 0 s.t. |f(t) — f(c)] <€ V|t —c| <.
Choose h < 0:

[ sen| <1 [T -rewst [Car-ta=c @0

and F'(c) = limy, o L [ f(t)dt = f (o).
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Theorem 49 (Integration by parts). f, g : [a,b] — R differentiable, f', ¢ integrable. Then
b b
| #gds=s0)9t) - aygla) - [ roda

b b
/ (g + f'g)de = / (fa)de = F(b)g(b) — f(a)g(a) (5.8)

Proof.

Theorem 50 (Change of variable). f continuous, g differentiable. Then
g(b b
B e = [ o) -g@e = [ Plo)ie = F0) - Floo)

8.7 Last class: integration of sequences of functions

Theorem 51. f, : [a,b] — R integrable for alln, f, — f uniformly on [a,b] asn — oo. Then f : [a,b] — R

is Riemann integrable on [a,b] and
/ f= lim fn
n—oo
Proof. Since f,, — f uniformly, 3N > 0 s.t.

< f(@) < fulz) + —— V€ [a,})

fn(x)_b—a b—a

Note that L(f, — 7=2) < L(f), U(fu + 55) = U(f).

Since f,, is integrable and upper Riemann sums are greater than lower Riemann sums:

b b
/fn—GSL(f)SU(f)S/fn—i-e Vn > N

so 0 < U(f) — L(f) < 2¢ thus U(f) = L(f) and f is Riemann integrable by definition.
Notethat‘fffn—ffflge Vn>N,sofffn—>f;fasn—>oo. O
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Final

Problem: Assume that f(z) is the first-order differentiable (f'(x) exists) in [—1,1] and Y7 | f(+) ab-
solutely converges. Prove that f/(0) = 0.

Hint: notice that ) £ is convergent and use proof by contradiction.

Solution:

Proof. Since Y f(1) converges, lim, o f (£) =0 = f(0), where f is continuous at 0.
(Proof by contradiction.) Assume f’(0) = ¢ # 0.

Then, we have:

g L&) = SOy @)
z—0 z—0 =0 T
Ve > 0:36 > 0 s.t. ‘}LSI:)—C <€:g V|x—0| <d
T@ 1 gy <5
T 2

Replace x = % i.e. |x| < 0 is the same as n > %. Then, we have:

1 |c| 1

Note that 14 52> L diverges.

By comparison test, Y | f (%) diverges, too. Contradiction.
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Problem: Let f be a bounded function on [0, 1]. Given any partition P = {0 =py < p; < -+ < pm = 1}

on [0, 1], we define

len(P) = o PAX | Pht1 — P
We also define
U,= inf U(f;P), L,= sup L(f;P)
P, len(P)>+ P, len(P)>1

Prove:
(a) lim, o U, and lim,_,, L, exist.

(b) f is Riemann integrable on [0, 1] iff lim,, . U, = lim,, o0 Ly,.

Solution:

(a) Proof. Note that U, is defined over smaller and smaller partitions, thus decreasing. Since U, is

bounded below by infyg ) f - (1 —0), lim,,_, U, exists.

Similarly, L, is increasing and bounded above by Supjg 1] f, and thus lim,, ., L,, exists. O

(b) Proof. =: Given f is integrable. Then, Cauchy condition for integrability holds:

Ve>0:3Pst. U(f; P)— L(f;P) <e¢

We increase max subinterval of P further s.t. len(P) > X: U, < U(f; P), L, > L(f; P).
Un = Ly <U(f; P) = L(f; P) < e
and choosing n — oo yields lim,,_ o U, = lim,,_,oo L,,.

<: Given lim,,_,o, U,, = lim,,_,o L,,. Then, lim,_,,, U, — L, = 0.
By def of limit, Ve > 0:3dN >0s.t. |[U,—L,—0| <e Vn>N.
By def of limsup/liminf, 3P, Q s.t. len(P),len(Q) > +: U(f; P) < U, + 5, L(f;Q) > L, — &.

Let R= P UQ be a common refinement:

U(f; R) = L(f;R) SU(f; P) = L(f;Q) < U, — Ly, + ¢
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MATH 104: Intro to Analysis Midterm 1, 2, Final Spring 2025

Problem: Let f(z) be first-order differentiable on [a,b], f(a) # 0, f(b) # 0.

Define a sequence {z,} s.t. f(z,) =0 for all n. Let liminf, . x, = c.

(a) Prove ¢ € (a,b). Note: liminf is not necessarily part of the sequence!

(b) Prove f(c) = f'(c) = 0.

Solution:
(a) Proof. Since f is continuous at a, f(x) #0 Vz € [a — §,a + §]. Similarly for b.
So, {z,} € [a+6,b — 0] C (a,b) and liminf of {z,,} must be inside (a, b). O

b) Proof. Let {z,, } be a subsequence of {x,} s.t. limy_ ., z,, = c. Then
k k
fle)=f(lim z,,) =0
k—o0

f@ng) =10 _ (since it is well-defined). -

Tr—cC

and f'(¢) = limy o

Problem: Let f: (a,b) — R be differentiable, | f'(z)| < M for some M > 0. Prove: lim, ,,- f(z) exists.

Solution:

Proof. Consider a < x <y < b: f is continuous on [z, y| differentiable on (x,y).
By MVT, 3c € (z,y) st |f/(0)] = [29=10| < M. Then, |f(y) ~ f(2)] < My — @] Va,y € (a.)
For any € > 0, choose § = %

Then, f is uniformly continuous: |f(y) — f(z)| < M|y —z| =€ V]z —y| <.

Choose a sequence (z,) C (a,b) s.t. z, — b~ (consider x,, = b — 1/n).
Then, since (z,,) converges, (z,) is a Cauchy sequence: Ve > 0: IN > 0s.t. |z, —x,| <€ VYn,m > N.

Thus, the Cauchy condition for uniform convergence of f holds:
\f(xn) — flzm)] <€ VYn,m>N

since |z, — x,,,| < 0. Thus, the sequence (f(x,)) converges and lim, ;- f(z,) exists.
Note that since f is uniformly continuous, for different sequences x,, — b~ and y, — b~, we have
Ve>0:30 >0s.t. |f(z,) — flyn)| <€ V], —yn| <9, and so

lim f(w,) = lim f(ya)

Tp—b~ Yn—b~
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